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This paper reports on the continuation of a study of the spectral properties of a Dirac operator.
The analytical methods developed by Weyl and Titchmarsh for the analysis of the Sturm-Liouville
equation are extended to the investigation of a system of two singular first-order differential equations.
Expansions associated with the system are established and a convergence theorem is presented.

1. INTRODUCTION

HE analytical methods developed by H. Weyl'
and E. C. Titchmarsh® for the solution of the
Sturm—Liouville equation,

') + A= V@Olt) = 0 (" = d/dn) 1)

are powerful tools for the investigation of the singular
cases of the second-order differential equations of
mathematical physics. For example, since Eq. (1)
corresponds to the radial wave equation of a non-
relativistic particle in a central field, the methods
referred to may be advantageously applied to de-
termine the properties of the Schridinger operator
for singular potentials.®

The relativistic counterpart of Eq. (1), i.e., the
Dirae radial relativistic wave equation for a particle
in a central field, takes the form of a system of two
" first-order differential equations:

zi(r) — [alr) + b@)]z.(r) = 0,
zy'(r) + @) + d@)lx,(r) = 0.
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Inec., San

It is the purpose of this paper to generalize the
methods of Weyl and Titchmarsh in order to in-
vestigate the expansions associated with this system
of Eqs. (2). The present paper is a continuation of
another paper by the authors on the spectrum of
the Dirac radial wave equations.*

The arguments here are presented for the case
of a semi-infinite interval (0, «) where the point
r = 0 is assumed to be a regular point and the system
is only singular for r — «. The coefficients a, b,
¢, d are assumed to be real-valued continuous func-
tions of r, and a(r) and b(r) are furthermore assumed
to be positive on any finite interval. The boundary
condition considered at r = 0 is given by

k7'(0) cos Bx,(0) + k(0) sin Bz,(0) = 0. 3
where 8 is a real constant and where k(r) =
la(r)/e(r)]*.

2. PRELIMINARIES
On the finite interval (0, 7°), let v(r, \) = [v,(r, ),
v2(r, N)] and w(r, N) = [w,{r, N), ws(r, N)] be two

vector solutions of system (2) that satisfy the
conditions

4 B. W. Roos and W. C. Sangren, J. Math. Phys. 3, 882
(1962).
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,(0) = —sin gk(0), 22(0) = cos 8k(0),
w(0) = —cos Bk(0),  w,(0) = —sin pE7'(0).
The Wronskian of » and w is defined by
W. (v, w) = v,(r)w,(r) — v.(Pws(r).

Since W, (v, w) is independent of r and Wo(v, w) = 1,
W.(», w) = 1 and v and w are linearly independent
solutions. A solution of (2) may be written as
w(r, A) 4+ IA)v(r, A), and if this solution satisfies
Sturmian boundary conditions at a point r = ry,
the eigenvalues will be real, nondegenerate, and
discrete, and extend from A = —® fo A = o,
The corresponding eigenfunctions are real functions
of r. For the singular case, the spectrum can be
investigated by taking the limit of the general solu-
tion as r° — «. As in the case of singular second-
order differential equations, it can be shown® by a
limit-point, limit-circle argument that for Im A = 0,
the system (2) will have a vector solution

2r, ) = wir, \) + m(\Nor, \) (4)

belonging to the class of square-integrable functions
L*(r, ). The function m(\) depends upon the
limit of circles in the complex \ plane, and for r° — o
is either a limit point or a point on a limit circle.
In the limit-circle case, all solutions are in the class
L*(ro, ). Furthermore, m(}) is analytic for Im A > 0
and m(X) = m()).

3. GENERAL TRANSFORMATION OF THE BASIC
EQUATIONS

The asymptotic bebavior of the solutions of Eqgs.
(2) for large values of the parameter A and for
large values of one or more of the coefficients when
the independent variable approaches a singular
point, can be conveniently investigated by using
the following transformation. The independent varia-
ble r is replaced by

o) = [ (D + @I + dO ds. (3

Formally, this transformation gives
dul/dtx = Uy,
duy/dee = —u, + B\, a, b, ¢, d)u,,

(6
where the components of the vector u(r) are defined
by

w(r) = FOz,(r),

() = —F()2,() + GOz,

™
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and
Fir, N = Da() + d0FPelr) +d017,
G, \) = @) F'@r, M),

R(\, a, b,c,d) = a()7'@'(r, NF'(r, )).

The transformed equations (6) have a form similar
to (2). However, the coefficients on the right-hand
side of Egs. (6) do not in general become large
when A does or when one or more of the coefficients
a, b, ¢, d, do.

It can be verified directly that a solution of (6)
satisfies the integral equations

U,(r, N) = U,(0) sin a(r) + U,(0) cos a(r)

®)

+ fo " U, sin [a) — a@)] ds,

©))
Un(r, \) = — Uy (0) sin a(r) + U,(0) cos afr)
+ [ V.86 cos latt) — a)] ds
where
S = G'OF \(r). (10)

4. ORDER PROPERTIES FOR LARGE VALUES OF X

It will be assumed that a and ¢ are bounded away
from 0 and « for all finite r. For a fixed finite r
and large ||, we obtain from (5),

ar) = AP + g + O™, (11)

where
her) = f " [a®)c@)} ds

and (12)

_ 1 17 b(s)e(s) + als)d(s)
0W=3), " u@ErF =

It is not difficult to verify also that for large [Al,
F@) = [a®)/c@]* + ON7") = k@) + O™,

F7'0) = [@)/a@P+00™) =k70)+ 007, (13)
G = O™, 8@ = 0oQ™).

Next, consider the order properties of U,(0) and
U.(0) for large |\|. If we assume, without loss of gen-
erality, that the boundary conditions (3) are satis-
fied for z,(0) = —sin Bk(0) and z,(0) = cos 8k~ '(0),
it follows directly from the transformation that

U.(0) = cos B8+ O\™Y),
Ux(0) = —sin 8 + O\7Y).

(14)
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Now let A = o -+ 47, where 7 > 0, and further-
more let

Ul(r, )\) — Hl('r, )\)erh(r)’ Ug(r, A) — Hg(r, }\)erh(').

(15)
It follows from Eq. (9) that
H,(r, N) = [U0) sin a(r) + U,(0) cos a(r)le ™"
[ e O L ()8(9) sin [ae) — a9 ds,
’ (16)

H,(r, \) = [—U,(0) sin a(r) + U,(0) cos a(r)]e_”'(')
+ f’ e TP TMINT (5)S(s) cos [ar) — afs)] ds.

If
u = max [[H\], |H.|],

these equations yield for large |\, after absolute
values are taken,

b < O]+ 1001 + 5 [ 156] ds.

It now follows from a lemma of a previous paper’®
that

4 < [leos 8] + |sin 8] exp [f 1S6)| ds],

provided that [; [S(s)| ds exists. H,(r, \) and
H,(r, \) are therefore seen to be bounded for all r,
provided that [ |S(s, A)| ds is uniformly convergent
with respect to A > p > 0. It follows immediately
that

Uir, N) = 0{e™”} and Us(r,\) = 0f{e™"}. (A7)

In the light of later developments, it seemed
natural to impose the more stringent condition that
for large |\,

[ 186,01 = oA, (18)
[

From the order properties for U,(r, \) and
U,(r, N), and the conditions imposed on the inte-
gral [5 |S(s, N)| ds, we obtain from the integral

equations (9) the following relations for large values
of Al

Ui(r, N) = cos [a@) + 8] + Ofe™" |\|7},
Ux(r, N) = —sin [af) + B8] + Ofe™ \|7'}.

(19)

8 B. W. Roos and W. C. Sangren, Proc. Am. Math. Soc. 12,
468 (1961).
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Further, from the transformation,

2,(r,\) = —k(r)sin [a(r) + 8]+ Ofe™” A7},
22(r, \) = +k7(r) cos [a(r) + 8] + O{e™ |7}

(20)

5. A SPECIAL SOLUTION: X(r, )

Before proving a general convergence theorem, it
is desirable to obtain a special solution of Egs. (2)
that is small for large r when the imaginary part of
A is large and positive. Again, it is more convenient
to consider the solutions u, and u. of the transformed
equations (6). Actually, we first consider the inte-
gral equations

Ul(T, )\) = eia(r) . _27:f ei[m(r)—a(n)IS(s)Ul(s) dS
o

—_ .21_’-/. ei[u(a)—a(r)ls(s)Ul(s) dS,
’ @1

Ui, N) = i 4 5 [ 059U, ds

_1f

5 ei[a(x)—a(r)ls(s)Ul(s) dS.

It is not difficult to verify that the solutions of
these integral equations satisfy the differential
equations (6).

In the study of the spectra for Egs. (2), it was
shown® that for the various cases of interest, either
Im a(r) > +o or Im a(r) - — o asr — « and
r > 0. In order to avoid duplication and a clumsy
notation, attention is here kept fixed on the case
Im a(r) — 4 «. The following arguments are easily
duplicated for the case Im a(r) — — .

A special solution of Eqs. (6) can be obtained by
successive substitution as follows: First, let

Uu(T, A) = ein((r), Ugl(r, )\) = ieia(r). (22)
Next, forn > 1, let
Ul,n+l(r; }\) - eiu(r)
— % ei[a<r)_a(')]S(8)Ul,,,(8) ds
— % eila(t)-a(r)IS(s)Ulm(s) ds,
’ (23)

Usnialr, N) = """
3 [ O OISQUL L ds
]

_ L

5 ei[a<,)—m(r)]S(8)U1,,,(S) ds.
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Then,

Ups— U, = —-%e“’")[j; S(s) ds

+ f eZi[a(s)—a(r)]S(s) ds],

and

e—lma(r) © A ~Ima(r)
Ui = Unal < 55— [ 186 ds < 50—,
because

fo " IS)] ds = 00,

Similarly, it can be shown that

Uy mer = Usal < [A/ N7,

Ui nir = Usal < T4/,
Hence, the series D =, [U,..:(r) — U,.(r)] and

the series 2.2, [Usnii(r) — U,.(r)] are con-
vergent if |A| > A. Therefore, by definition, let

U,t) = lim U, ,.(r) and U,(r) = lim U, ().

n—® n—@

Now for every n,

lUln(x)l S lUl,l, + IU1,2 - Ul,ll

tt + lUl,n - Ul.n—ll

+ -
<o 1=y

and for n — o and |]\| > A4,

[U,@)] = lim [Uy @) < e™™7/(1 = 4/]A]).

n—o

Similarly,
|U=(n)] < lim [Ue )] < ™7 /(1 — A/N]).

By dominated convergence, it follows that the limit
operations may be taken under the integral signs
and that U,(r) and U,(r) satisfy Egs. (21) and conse-
quently, Egs. (6).

Consider Eqs. (21) and the solution U = [U,, U,).
It is easily seen from these equations that, as r — o,

Ui, ) = e {K. () + o()},
Uslr, M) = e {EK() + (1)},

where

KO =1— 5’[ T8 U(s) ds,

W. C. SANGREN

K0\ = i+%j; ¢ O S Ui(s) ds,

and
K,(\) = iKi(\).

By use of the general transformation, these special
solutions can be converted to solutions of Egs. (2).
We have

Xi\(r, N = FO{GOU.() — U},
Xo(r,\) = F'(OUL().
By substitution for U, and U, we have
X,(r, N) = F@)e'* " {GME,(N) — K:(\) + o(1)}, (24)
Xo(r, ) = F7'(0)e" P {EK.(N) + o(1)}.
6. ORDER PROPERTIES OF X(r, \)

Let v(r, A\) be the vector solution mentioned in
Sec. 2. The order properties of v,(r, A) and v.(r, \)
for large X\ are given by Egs. (20):

v, N) = —k@) sin [a@) + 8] + 0{e*” A},
vo(r, \) = +k7'(1) cos [alr) + B] + Ofe™ " [T},

Now »(r, A) and X(r, A) are linearly independent
solutions, because X (r, N) becomes small for large r
whereas v(r, \) becomes large for large r. Next take
X(r, A) to be proportional to z(r, \), that is,

2(r, N) = L)X, N).
This is a valid assumption if X(r, N\) belongs to
L*(0, ). That this is true may be verified by con-

sidering formulas (22). For large [A| and r, these
formulas reduce to

Xilr, N = —k@)e’ ™7 TK,0),
XZ(T, )\) = k—l(r)ei[)\h(r)+a(r)]Kl(}\)’

and these last two functions are in L*(0, «).

The order properties for w(r, A) and »(r, \) for
large r can be derived directly from Eqs. (7). They
have been derived previously* and are listed here
for convenient reference. For ¢™** ‘"’

Uir, ) = e {MQ\) + o(1)},
Uslr, \) = ¢ INQ) + o(1)},

where
ney = —D L DO L[ e 50,6 s,
Ny = B0 BO 4 L[ o560, s
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From the basic transformation, it follows that
v,(r,\) = —F@)U,(r, \) + Fr)Gr)U,(r, N)
F@e " {=NQ) + GOMN) + o(1)},
vo(r, A) = F'0)Us(r, \)

= F\(ne 2 {MQ)) + o(1)}.

Consider next the Wronskian

W.v,2 = W.0, LX)
L)X, — v.X,]
2L)K, MMM + o(1).
Because W, (v, w) = 1, it follows that

L)) = 2K, 00M\)] ™.

Il

Hence,
2(r, N) = X(r, N)[2iK,\)M(N)] Y,
and therefore
letr, M| = | X, M| {2 [V MM}

The previously obtained bounds for U,(r, A\) and
Ua(r, \) and the basic transformations therefore
give

la(r, M| < {2 [K.N)] 1MW} THL — 4/N T

X e OHIFO)| + [FO| GO},
[, M| < {2 [Ku)] (MM} — A/

X e ™ |F ().

Now M and K both exist and are bounded away
from zero, because (as was shown) W, (v, 2) = 1 =
2tM K, L. Finally, we can conclude that for large A,

letr, V| < CE@)e™™ ",
where C is a constant and
E@) = max [|[F7'()], [FO)| |G| + [FOI].

For later reference, we need an expression for
z{r, A} which holds for all r and for large A. Because

2r, \) = X(r, N{ZK.WMN)},

and X(r, A) in turn depends only upon the special
solution U,(r, A) and U,(r, A\), it is desirable to
consider Egs. (21). These equations can be written
in the form

Ui(r,A) = e“""){l - %fo e U8 Ui(s) ds

+§’f ¢ S U(s) ds

1003

1

2 ei[a(a)—a(r)]S(s)Ul(s) ds}

— eia(r){K}()\)
4 % f T IS ULE) ds}[l + 007,

_ % f T IS UL ds}[l + O™

It is apparent that these relations may be written
in the form

Ui, N = Cilr, e [1 + O],
Uslr, N) = Colr, Ve [1 + OA7H)],
where
Cy(r, N) = iC\(r, V),

and
CEN = K0 +5 [ 6 NS0 ds

It is easily verified that this integral equation has
the solution

Cyr, N) = DO exp [5’ [ s ds],
where

DO = K,(\) exp % f " 86 ds].

Hence,

G N = KO exp | f e ds:l.
Tt now follows directly that
Xor, \) = F'0C(r, Ne'* T [1 4 O(A[H],
Xi(r, N) = [FOG@)C\(r, V)
— F@)Cylr, Nl [1 + O™,
and therefore that

4l M) = —5 KM

X exp [fm S(s) ds + ia(r)][l + o™hl,
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Lo igyaret
&, N = 5 kT OM N

X exp [ f " S(s) ds + ia(r)][l + o).

7. A CONVERGENCE THEOREM
Theorem. If f(r) = [fi(r), f.(r)] is such that the
integral

[ e 16] + 0@ 1]} b

18 uniformly convergeni for large \, and [ {S(s,\)| ds=
O(\|™"), then

R+ie

®(r, \) dX,

~R+ie

fr) = —Iim%i

R

where &(r, \) = [®,, ®,] is defined by

20,0 = 20,0 [ COuOLO + a@uOkE) ds
o) [ @2OR6 + a@a@h0) b,
&0, = 2N [ COWOLO + a@nOLE) ds

+ va(r, N) f ) {c@a©)fi(s) + a(9)z()fo(s)} ds.

Thas statement s true uniformly in e.

The proof of this theorem is begun by writing

&, in the form

- atr, A)[fow + f]
ol L]

= @11 + 4)12 + @13 + ¢14'

®,(r, \)

Since @(r, \) is holomorphic in the upper half-plane,
the contour [—R + 7¢, R 4+ 7¢] may be deformed
into the semicircle of radius B in the upper half-
plane. First, consider the integral ®;,. Because of
the order properties of », and 2z, this becomes

2= 06, ) [ (@2 OhO + a@2616) ds

[

O{k@e‘“‘” [ o™ B 116

+ a@® 6] ds}

— O{e—fhl('”}.
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Here it has been assumed that [ E(s) {c(s) [f(s)| +
a(s) |f2(s)|} ds is uniformly convergent in A for large
[A|. On the semicircle, A = Re*’, where 0 < arg\ < =
and 7 = Im A = R sin 6. Hence,

[a.

and this integral tends to 0 as B — «. In a similar
fashion, we can show that &, —» 0 for B — «.
Now consider the integral

— f O{e*Ruinﬂh’(r)S}Rdo,

2, N =20, [ EORORO + a@u60] ds

on the previous semicircle. With the use of the order
properties for large A, this becomes

Do = —2 KON
X e [f Sle) da + ia(r)]ll + 0N
X f ,_5 {k() sin [a(s) + Ble(®)f:(s)
+ k@) cos [a(s) + Bla®)f(9)} ds
{e_lma(') ’ Ima(s) }
T O\ [ &m0 e 1101+ 1161 ds}-

The last term vanishes on the semicircle as B — .
The terms involving O(]A|™") and exp i{a(s) + B},
inside the integral, also vanish on the semicircle as
R — . The remaining term is

1= —% KP)M () exp [ fo " S(s) ds + ia(r)]

x [ el Ligeare

+ % k'l(r)a(s)fz(s)} ds.

Now it is easily shown that
MQ) = L {1 + 0(1/N)}.

Consequently, for large A,

I = —k@e e f e‘”“‘”””{—@ a(9)f1(s)

r—3 21:

+ ’-0:12—@ a(s)fg(s)} ds.

By adding and subtracting a term and putting, for
large X\,

a(r) = Mh(r) + g(),
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this becomes

I -k(r)e””‘"’*"‘"‘{ [ e

-8

—i[As(2) +g(r—)]

x [_k_%—_) fr—) + 2 - >][a<s)c(s>1* ds
4 j‘ _.w.)(e—-am[ k(s) c(9f(s) + == kGs) a(s)fz(S)]

+e_.-,(,->[7°;%__) fr—) + k(r Ko=) o )]) }

=1, + I,

Consider I, where f, and f, are taken to be of bounded
variation so that their one-sided limits exist. It is
easily seen that

I, = _k(r)e-n)\h(r)l:_k— g;_) f ( )_|_ k(r ) fz( _):!

X f_ e ™M [a(s)e(s) | ds

e
2
For fixed 5 and large A, the term e™ ™ when

integrated over the semicircle vanishes as B — =,
Consequently,

kz f2:| (1)\—1) [1 _ 6+i“h'(r)]‘

[ 1)\ = Swilie-) = #e—)pe-))

Next, consider I, and let

FO = e““"[—’—‘%’c(s)fl(s) + %k"’(S)a(S)fz(S)]-

Hence,

I = —k@et ™0
X f’ e“'"("[a(s)c(s)]%[F(s) — Fr—)] ds.

Because f,(r) and f,(r) are of bounded variation in
the neighborhood of r, F(s) is also. Hence,
Il < k) [ 1F© — Fo-)
r—é
X [a(s)c(s)]ie—lr ain 8{h(r)—h(as)) ds
= O(8/R sin 6).

Therefore,

f I, d)\i

=000)—>0 for §—0.
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The integral ®,, over the semicircle as R — « thus
contributes exactly
1 . .
5 wilfir—) — k=)o —)].

Similarly, ®,; contributes

%m’[}‘l(r-l-) + k()0 )]

Therefore,
R+ie
“lim [ @0, N d\ = L ilhe—) + A0
R—~w J—R+ie 2

= Slhir+) = LE—WE).

Consequently, if f; and f, are continuous, it follows
that uniformly in e,

R+ie

®,(r, \) d\ = f,(r),

—R+ie

1..
—— lim
T Row
and similarly that

R+ie

By(r, N) d\ = f,(r).

—R+ie

1 ..
—— lim
Tl poo

8. EXPANSIONS
In the previous section, the following representa-
tion for the function f(r) was shown to be true:

fr) =

—lim

1 R+ie

— ®(r, \) dX\.
R T </:R+ie N
The problem in this section is to investigate the
behavior of the integral as ¢ — 0. It again suffices
to consider only ®,(r, A), because the same argu-
ments apply to ®,(r, ).

First, it is true that relation (25) may be re-
placed by

(25)

R+ie
—1lim =

Roo T

for) = Im &(, ) dA.

~R+ie

(26)

Because ®(r, )\) is analytic in the lower and upper
half-planes, it follows immediately from the con-
vergence theorem that

—-R—ie
hm -

R-x

fr) = &(r, \) d\.

R-ie

In this expression, keep ¢ fixed and let A = ¢ —
ie = A — 2{¢, 50 that

—R+ie
@) = lim — ®(r, X — 2¢¢) dX
Row UM JRiie
1 R+ie _ .
= lim — 3(r, N dX.

R i ~R+ie
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If this last expression is added to the other repre-
sentation for f(r), we obtain

R+ide
2f(r) = —lim — [®(r, A) — &(r, N)]dAr
Row W JoR1ie
2 R+ie
= —lim - m [®r, )] dA,
Roo T JuRiie
because ®(r, X) = &, \). Formula (26) is thus

verified.
Formally, because »(r, A) and w(r, \) are real for
real }, it follows that

R+de
Im {——lf
T J~R+ie

=1 [ =L [ {0 + movme, )

&,(r, A) d?\}

X [ EOn @6 + a5 s} o

rn [ [ [

+ MOV, D@

b6, ) + e, VI ds) | 20
=2 [ ne 0 o) [ EnHO

+ al8)va(8)f2(s)] ds

+1[ 0o [ onone

+ a(8)0:(8)f2()] ds do(N)
=1 [ 00 a0 [ E0none

+ A 0) ds

In this last expression, it is assumed that R — o,
¢ — 0, and that

—lim [ Tm {mls + 9} ds

adi]

p\) =

In those cases which involve a continuous spee-
trum, it has been shown® that

Im {m(\)} = —1/[u(o) + #(9)],

where g, and », cannot vanish simultaneously. In
such cases, the contributions to the expansions be-
come for f,(r)

2 EED [ o6, A6 + anen) ds
and for fg(r)

W. C. SANGREN

% f 5(r, A)

UEN o [ eon, VIO
+ als)va(s, Nfx(8)] ds,

where the integration over A is over the interval
of the continuous spectrum.

For the A intervals, where the only singularities
of m(\) are poles, and a point spectrum results, the
associated contributions to the expansions are series.
Formally, these contributions become for f,(r),

2 eon(r, ),

and for f,(r),
2 cnlr, N,

where
= o [ EORE MO + as, WG] ds,
and
= [ Tenio, M) + auits, A1 ds

The functions f,(r) and f:(r), in order to be ex-
panded over the interval from 0 to «, cannot be
entirely independent, but must satisfy the condition

k(0)1,(0) cos B + k(0)f.(0) sin 8 = 0,
if v satisfies the condition
EH0)0,(0) cos B8 + k{O),{0)sin 8 = 0.

The above formalities may be made rigorous. For
instance, let it be assumed that the spectrum of the
system (2), (3) is continuous, and consider the right-
hand side of relation (27). Because » and w are
analytic functions of A = ¢ - 47, and because »
and w are real functions of A for real ), it follows that

Im {#} = O and Im {w} = O(e,

as 7 = ¢ — 0. Therefore, for r, s in a fixed interval,
we have

Im {z,(, No.(s, A} — 0,(r, Narls, M)}
Im {w,(r, Nvi(s, N) — v,(r, Nw,(s, N}
Ole)

Il

and

Im {z,(Nvs(s) ~ v1(r2s(s)}

m {[wi(r) + mNo:()]:(s)
= u()[w.ls) + mNwa(9)]}
Im {wi(nvs(s) — vi(wa(s)}
O(e).

Il



FIRST-ORDER DIFFERENTIAL EQUATIONS

The right-hand side of Eq. (27) can be rewritten
in the form

m [ L [ [ kom0
+ a@2)O)] ds
- [ 50E@2OE + aueHE] s

+ f " A EELOE) + aEn©E)] ds} dx].

With the use of the above order properties, this
becomes, for fixed R and € — 0,

Im [—}r [0 [ eonone

+ a(s)z(s)f(s)] ds d)\:l + O(e).
To evaluate this expression, only the two con-
tributing terms must be considered. The first is
for fixed e, given by
R+ie w©
[ mbeNa [ Reb@a0ho
—R+1ie 0
+ a(9)z()fx(s)] ds
R ©
= [ b, o +i91ds [ Re@a@h
~R 0
+ a(9)2,(9)f2(9)] ds

=0 [ do [ 1) RO+ a0 £GHON ds

= 0@ [ {[ 0 bl + a0 i1 as) o |

= 0(6)0(6—}) = O(e*).

Here Schwarz’s inequality and Lemma 2 (given in
Appendix) have been used. Similarly,

f_ " Re nr, o + i) — n(r, 0)] do

X fo " Im @z©):(6) + a@zE)f6)] ds = O).

The remaining contribution to the integral is

=i I; 0(r, o) do f " Im @6, ¢ + 066
+ aWels, o + i0fu@) ds = — [ " oy o) do

x [ " Im 0L (a6, o + i — a6, o)

1007
+ a(9)f>(8) {22(s, o + 1&) — 2(s, 0)}] ds
_ }r ‘/:R u(r, o) do j:o Im [c()f,(8)zi(s, o)

+ a(9)f8)2(s, 0)] ds.

The first integral on the right-hand side is O(e).
To show this, order properties are needed for m(d)
and z(r, A) as € — 0. For real A\, w(r, ) and v(r, \)
are real, but m(\) may be complex. In cases of a
continuous spectrum and real A, it has been shown®
that

mQ) = [—(uor, + vor,) — 1l/(us + ¥2),

where g, and v, cannot vanish simultaneously and
where g, K., ¥4, v, are real. For complex A = ¢ + 47,
the corresponding u., t., v., v, tend to real values
for real A in the manner of u,(c + 7€) = u,(c) +
O(e) for e = 7 — 0. Consequently, for e = 7 — 0,

_[pu(@us(e) +vu()r.(a)] + 4
pa(e) + vi(o)

It now follows directly that
Im [z,(s, ¢ + 1€ — 2(s, 0)]
= Im [{w(s, o + 76 — wi(s, 0)} + m(c + ¢
X {vi(s, ¢ + ie) — v,(s, o)}
+ vi(s, D {mo + i) — m(a)}] = O(9.

Consequently, the only term that remains for fixed
Rand e > 0is

m(a + ie) = [1 +0@)].

_}r j:R u(r, o) do ‘/:D Im [e(s)f,(8)z.(s, o)
+ a(©)fa(s)2(s, 0)] ds.

Hence, for a given R and ¢ — 0, this becomes

2 06,0 do L) + R

X [ kOO, 0 + a@fanits, ) ds.

Thus, using the convergence theorem and this result,
the expansion for f,(r) is given by

1 R+ie
Hlt) = }zg I:—1—r f_lh_‘ Im ®,(r, \) d)\]
_1 f _o(r, o) do

wa(o) + vi(o)
X f E©f O, o) + a@f©vss, o)] ds.

The expansion for f,(r) can be proved similarly.
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APPENDIX

Lemma 1. For any fized N and N, lim,... W[z(r, A),
2(r, N)] = 0.

Proof: Because z(r, \) satisfies at r, a boundary
condition which is independent of A,

W, [wi, N) + I, A), wlr, M) + I(Nvlr, N)] = 0,
W, lz, N + 1) — mMW(, N, 20, ')
+ [IV) — m@A)(r, N)] = 0,

W, [elr, M), 2(r, M)]

+ [ — mNIW., o, N), 2(r, V)]

+ V) — mQ)IW, [e(r, N), (r, M)]

+ ) — mMIIA) — m@\)]

X W, lwlr, A, elr, \)] = 0.
Now,

Wn[”(?') )‘); Z(T‘, }")] = (}\ - )")

X [ 9260 + COn@n®) ds

+ Wob, 2] = 0[ f " )@

-+ 0(3301(3)21(3)[ dé‘] -+ 0(1) = 0[/:1 {a(s) [zz(s)lz
r E]

+00) @} [ (06 I + @ lv,(sn’}]

+ a(l)O[ j; i {a(s) [0(8)]* + (s I'vz(S)l’}*] + o(1),

B. W. ROOS AND W. C. SANGREN

as r — o, Here, one has used the fact that z is
L0, =).
In the limit-point case,

1) — m)| < 2R,

= [ fo b {e(® @ + ol [vz(s)r,]"_

Consequently,

lim [IQ) — m(\)| W,,[o(r, V), 2(r, N)] = 0.
Similar arguments apply for the other terms in-
volving [I(A) — m()\)]. In the limit-circle case,
Jot le(s) u®* + a(s) |v2(s)°] ds is bounded but

I(A\) = m(\). The lemma, therefore follows.
Lemma 2.

fo "1 [,V + () [aats, N [7] ds = — 2 L2,

T

Proof:

N =) [ [aaale, Veulo, V) - e 6, Vs, X)) ds

= Wr, [Z(T, )‘)1 2(7', X’)] - W, [Z(T, )‘)r 2(7', )")]-

From Lemma 1, the term W,, - 0 as b — «. Also,
gince 2 = w + my,

Wo[z(fx ;)\)} z(?.: )\,)] = 21(?‘, )\)22(?', }\’)
= &, Nalr, M) = mQ) — m(\),

and the lemma follows immediately.
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A kinetic equation is derived for the description of the evolution in time of the distribution of veloc-
ities in a spatially homogeneous ionized gas which, at the initial time, is able to sustain exponentially
growing oscillations. This equation is expressed in terms of a functional of the distribution function
which obeys the same integral equation as in the stable case. Although the method of solution used in
the stable case breaks down, the equation can still be solved in closed form under unstable conditions,
and hence an explicit form of the kinetic equation is obtained. The latter contains the “normal’”’
collision term and a new additional term describing the stabilization of the plasma. The latter acts
through friction and diffusion and brings the plasma into a state of neutral stability. From there on
the system evolves towards thermal equilibrium under the action of the normal collision term as well
as of an additional Fokker-Planck-like term with time-dependent coefficients, which however becomes
less and less efficient as the plasma approaches equilibrium.

1. INTRODUCTION

N recent years many convergent efforts have been
directed towards the study of the evolution of
ionized gases under various conditions. The role of
the long-range Coulomb interactions in driving such
systems towards thermal equilibrium is one of the
most interesting aspects of this problem. In 1960
the author'”® and, independently, Lenard® and
Guernsey,* derived a kinetic equation describing the
evolution of a spatially homogeneous electron gas
towards equilibrium:

dp(v; 1) = (’3{;0}

B(k'v - k'vl)

k*| e (kv/k)]
X k(@ — 3)p(v)e(v), (1.2)

with the following meanings for the symbols: ¢ is

the charge of the electron, ¢ the number density,

m the mass, ¢(v; ¢) the velocity distribution function
for one particle,

1.1)

Cip} = 2e'em™ fdkfdvl k-d

9 = 9/av; 9, = 9/dv;,

€6) = 1+ @/Kri [ dv, oy ~ Lv)L-a(w),

ws = 4we’c/m.
The singular functions é.(z) are defined as follows:
0.(z) = 8(x) = i @(1/), (1.3)
where @ denotes the Cauchy principal part. The

1 R. Balescu, Phys. Fluids 3, 52 (1960).

* R. Balescu, Statistical Mechanics of Charged Particles
(Interscience Publishers, Inc., New York, to be published).

3 A. Lenard, Ann. Phys., 3, 390 (1960).

¢ R. L. Guernsey, The Kinetic Theory of Fully Ionized
Gases, U. S. Office of Naval Research, Contract No. Nonr.
1224(15), July 1960.

highly nonlinear equation (1.1) [ (») is a functional
of ¢(v)!] explicitly takes into account the collective
nature of the collision processes. The ideas leading
to Eq. (1.1) have been exploited and extended in
various directions (see for instance references 2;
5-8). The theory has however an important limita-
tion which will be presently discussed.

It is well known from the theory of plasma oscil-
lations *°~"? that a spatial disturbance at the initial
time can behave in two distinct ways at later times:
in so-called ‘“stable” plasmas it will give rise to
damped oscillations, whereas in ‘“‘unstable’” plasmas
there appear exponentially amplified oscillations.
This behavior results from the properties of the
linearized Vlassov equation of the plasma. The oc-
currence of one or the other case depends only on
the initial velocity distribution function ¢(v) and
not on the initial perturbation. More precisely, in
the linearized Vlassov approximation, the intrinsic
behavior of the plasma is uniquely characterized
by a single function, called the dielectric constant
ex(w), which is defined for complex values of the
frequency kw by

) = 1 — @ [ gy EoB(¥)
e(w) = l—szdvk-v—kw’ weE S,.

This definition, valid when w lies in the upper half-
plane S, is extended to the whole complex plane
by analytic continuation. The proper frequencies
of the plasma are the roots w; of the equation

5 R. Balescu and H. 8. Taylor, Phys. Fluids 4, 85 (1961).

¢ R. Balescu, Phys. Fluids 4, 94 (1961).

” R. L. Guernsey, Phys. Fluids 5, 322 (1962).

8 N. Rostoker and M. Rosenbluth, Phys. Fluids 3, 1 (1960).

® L. Landau, J. Phys. (USSR) 10, 25 (1946).

10 M. E. Ghertsenstein, J. Exptl. Theoret. Phys. (USSR)
23, 669 (1952).

1 J, D, Jackson, J. Nucl. Energy Cl, 171 (1960).

12 Q. Penrose, Phys. Fluids 3, 258 (1960).

(1.4)
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ex(w;) = 0. If there is a root lying in the upper
half-plane, the plasma is unstable.

Coming back to Eq. (1.1), it has been shown that
a necessary condition for its validity is that the
distribution ¢(v) describes initially (and hence at
all later times) a stable plasma. Its derivation breaks
down for unstable plasmas.®**'*®

It is physically obvious that the exponential
growth of plasma oscillations cannot be unlimited.
The mechanism which stops this growth has been
assumed by many authors to be found in the non-
linear Vlassov equation. However in a recent paper,
Drummond and Pines'* have shown that, besides
the latter mechanism, there exists another one within
the framework of the linear Vlassov theory. These
authors demonstrate that the very existence of un-
stable oscillations induces a change in time of the
momentum distribution; this change is such as to
finally suppress the instability.

However, this mechanism depends crucially on the
existence of periodic inhomogeneities in the plasma.
In a spatially homogeneous system or in a state
with localized inhomogeneities this mechanism does
not exist. Our purpose in the present paper is to
show that the instability induces also another type
of evolution of the velocity distribution. This new
mechanism is effective in all situations, because it
is determined by the behavior of the binary corre-
lations. In the present paper we will however limit
ourselves to the study of spatially homogeneous
plasmas. The crucial point in the derivation of our
equation is the following. It will be shown that the
two-body correlation function undergoes in an un-
stable homogeneous plasma an exponential growth
which has the same origin as the growth of plasma
oscillations. But within the ring approximation, the
rate of change of the momentum distribution is
related to the binary correlations; hence the insta-
bility will induce a new term into the kinetic equa-
tion of the plasma.

Section 2 is devoted to a review of the general
theory of nonequilibrium statistical mechanics and
to the derivation of a formal kinetic equation. The
latter is expressed in terms of a fundamental func-
tional of the distribution F.(v; w), which obeys a
certain integral equation. Although the same equa-
tion appears in the theory of stable plasmas, its
mathematical properties change significantly when
the plasma is unstable. After a short review of the
stability conditions in Sec. 3, the stable solution is

13 A, Lenard, Bull. Am. Phys. Soc. 6, 189 (1961).

4 W. E. Drummond and D. Pines, Proc. Conf. Plasma
Phys. Controlled Nucl. Fusion Resch., Salzburg, 1961 (to
be published).
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briefly discussed in Sec. 4. Section 5 is devoted to
the solution of the integral equation in the unstable
case. The kinetic equation is derived in Sec. 6 and
some of its properties are discussed in the final
section.

2. DERIVATION OF FORMAL EQUATIONS

The system studied in the present paper is the
simplest idealized type of plasma which could ex-
hibit the phenomena we have in view. It consists
of a spatially homogeneous electron gas of density
¢ imbedded in a continuous neutralizing positive
background. The relevant reduced distribution fune-
tions which characterize that system are the one-
particle velocity distribution ¢(v,; ¢) and the two-
body distribution, which is Fourier-analyzed as
follows:

fo(Ba — X5, Vo, Vg, 1) = cz{so(va; De(vs; 1)

+ f dk e ey (Va, Vs t)}. 2.1)

These functions have been defined in references 2,
15, and 16 as integrals of the fundamental N-body
distribution function fv(xy, -« , Xy, V5, --+ , Va3 8)
which obeys the Liouville equation (we consider
here only classical systems).

We shall now derive a kinetic equation for the
one-particle function ¢(v.; t) starting from the
Liouville equation. The calculations of this section
do not depend on the stability criterion of the
plasma. We use the theory developed by Prigogine
and the author,’” generalized by Prigogine and
Résibois'®'" and by the author.” We sketch here
the main lines of the general theory for the facility
of the exposition; more details can be found in
reference 2, and, with somewhat different notations,
in references 16, and 17. The Liouville equation is
written as follows:

Lfy = (L + €L)fx = 0, 2.2)

with

o= 3+ X v,-(3/0x), (2.3)

o= &l == m(dV,./x,)-(3; — 3,), (2.4)

i<n i<n

and

- 1 8+° gk ximx
1
X; — X, = =z — —_—

(l i |) 27['2 Q zk: k2

1s I. Prigogine and R. Balescu, Physica 25, 281, 302 (1959).

18 T. Prigogine, . Non-Equilibrium _ Statistical = M echanics,
(Interscience Publishers, Inc., New York, 1963).

17 1. Prigogine and P. Résibois, Physica 27, 629 (1961).

Vin = (2'5)
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Let g(zvt | z'v't’) be the retarded Green’s function
of the Liouville equation (2.2) [z, v stand for
the set x;, -++ , Xy, Vi, + -+, Vy; 8(x — 2') means
II; 8(x; — x?).] This function is defined as the
solution of the equation

£G(zvt | ') = 8(x — 2')d@w — v)8(t — ¥), (2.6)
with the causal condition

t< . 2.7

In terms of the Green’s function, the solution of
the initial-value problem for the Liouville equation is

S(zvt | ') = 0 for

falz,v;8) = f dz’ dv’ Glavt | ' 0)fx(z’, v'; 0)

=gt | 0H0). (2.8

The last equation defines G(t | ¢') as an operator
acting on fx(t'). As the Liouville operator has time-
independent coefficients, it can be shown that
G(t | t') is a function only of 7 = ¢ — t’; moreover it
vanishes for r < 0. It is therefore natural to intro-
duce the Laplace transform of the Green’s operator,
called the resolvent operator:
@) = [ dreTg. 2.9)
0

Expressing G(r) in terms of ®(z) and substituting
into (2.8), we obtain

() = @07 [ dee @O, (@10)
The contour C is a straight line parallel to the real
axis and lying above all singularities of ®(z).

We now introduce perturbation theory. Calling
®o(2) the resolvent of the unperturbed Liouville
operator £, [Eq. (2.3)], it can be shown that ®(2)
obeys the following equation:

R(E) = Rol2) — €R(R)L'R(). (2.11)

The latter can be solved by successive iterations and
the result, substituted in (2.10) yields

fo() = (@m) io f de 6 (— )"

X Ro(2)[£'Ro(2)]"fx(0).

We now go over to the Fourier representation of
references 2, 15, and 16, whereby this equation is
transformed into

o 0= @07 3 [ e (= T /0

(2.13)

(2.12)

X ({k}] ®o@[L'R@]" [{E' D)o (v; 0),
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where v and » are the numbers of independent
nonvanishing wave vectors in the sets {k} and {¥'}.
It is moreover easily shown by a direct ealculation
that

II o, ~

k).

(2.14)

The terms of the perturbation series (2.13) are rep-
resented by exactly the same diagrams as in reference
15; the only difference in the interpretation is that
the lines in the diagrams no longer represent oscil-
lating exponentials, but factors ®,(z) (which are the
Laplace transforms of the former).

After this general outline, we come back to the
specific problem we have in mind. We want a descrip-
tion of the plasma in the “ring approrimation’ intro-
duced in references 1 and 2. It has been shown there
that, in this approximation, the contributions to p,(f)
coming from p,(0) where {k’} = {0}, are negligible
for sufficiently long times (¢ > w,'). Hence, Eq.
(2.13) for {k} = {0} becomes

pov; &) = 2m)7" Z:;)fdze“"‘(—ez)"

X 0] Ro(2)[£'Ro(2)]" [0)po(v; 0).  (2.15)
It results from the structure of the perturbation
series that the most general contribution to the 0-0
matrix element of the resolvent is represented by
a succession of diagonal fragments, i.e. transitions
from zero to zero through states in all of which
there are at least two nonvanishing wave vectors.
Within the ring approximation, we are interested
only in diagonal fragments of a special type, called
rings, a typical one being represented in Fig. 1,

kY Qo) [{K'}) = (Z—k_v————_

Fig. 1. A typical ring diagram.

and we reject from (2.15) the contributions of all
other types of diagonal fragments. Let us introduce
the notation

Rz =

©

>

n=1
(all rings)

(—e)" 0] £ [Ro(2)L’]" 0). (2.16)
The summation is carried out over all ring diagrams,
i.e. all the diagrams summed in reference 1. Then the
series in Eq. (2.15) can be rewritten as follows:

pov; 1) = 2m)~" Z f dz e {R(Z)—}mpo(v 0)

m=0

= (©om™! ./; dz e "' po(v; 2). 2.17)
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By time differentiation of Eq. (2.17) and integration
over all velocities but v,, we easily obtain the kinetic
equation for the reduced velocity distribution func-
tion ¢(v,; t),

dip(va; ) = (2m) f @

X f &z "R@a;d).  (2.18)
We now substitute for p,(v; 2) its Laplace transform
in order to come back to the time-dependent velocity
distribution:

dp(va; ) = @0 [dee

X [ @R [ dreae; 0,
(a) 0

or, making use of the causality condition (2.7),

dov; ) = @0 [ dr

X f dze i f( @) R@pl; £ = 7). (2.19)

The transformation leading from (2.18) to (2.19)
is a very important step for the following reason:
A Dbasic assumption in nonequilibrium statistical
mechanics is the factorization of all s-particle
velocity distribution functions at some initial time,
a property which can then be shown to persist at
all later times;

fon(vly crr Ve t) = (II1 ¢(vi; t) (220)
This property implies however that the Laplace
transform &,(v,, --- , V.; z) is not factorizable [a
Laplace transformation transforms (2.20) into a
convolution]. But the factorization theorem is crucial
in the summation procedure of the rings. By making
the Laplace transformation leading to (2.19), we
recover time-dependent velocity distributions, which
can be factorized.

Equation (2.19) is a typical non-Markoffian equa-
tion: the evolution of the distribution function at
time ¢ depends on the whole past history of the
system, from time zero up to the present time .
This non-Markoffian character (i.e. the memory
of the past) is typical of any short-time kinetic
equation.'®'!”

In the limiting case, where the duration of the
memory is very short compared with the rate of
change of the distribution function, (2.19) can be
approximated as follows: The variation of po(v;t — 7)

R. BALESCU

during the effective duration of the memory is
neglected and this function is replaced by po(v; ).
Hence, Eq. (2.19) reduces to the Markoffian equation

szt

e

1
duplva; ) = 5= [ &

X [ @) R@nl; ). @21
(a)
If, moreover, the plasma is not close to instability,
the only relevant contribution to the integral is
the residue in z = 04, and the right-hand side
(r. h. 8.) reduces to
[ @ RODnein: @22
In this quantity, the summation over the rings
expressed by Eq. (2.16) has been performed explicitly
in references 1 and 2; it eventually leads to Eq. (1.1).
We note that the summation procedure of reference
1, Sec. 3 (or of reference 2, Sec. 40) depends only
on the topological structure of the rings, and can
be taken over with only trivial changes for the
evaluation of the more general quantity

f( @) R@alos £ = )

appearing in the non-Markoffian Eq. (2.22). One
merely has to make the substitutions
o(V; 1) > o(v; t — 1),

1
i(k-v;, — k-v, — 2)

ro_(k-v; — kev,) >

in every expression occurring in the former theory.
We therefore immediately quote the result of the
summation over the rings:

dtw; ) = —(22)

¢
x [ f dr e f dk &%k 3Fy(v; 2/k).
¢ 0

Of course, Fy(v; 2/k) is also a function of 7, but for
the sake of simplicity, we do not write down this
dependence explicitly. Permuting the z and & inte-
grations for later convenience, and writing w = z/k,
we obtain

o ) = —a [ dkik-d5(v; ), (229)

with

1

Fe(v; ) = o

dwf dr e Fy(v; w). (2.24)
0
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The fundamental function Fy (v; w) is the solution
of the following integral equation:

(@ — WF(v; w)

= (V) f dv: _“‘Ig‘;;_wi'vl + gu(v; w), (2.25)
where
a0) =14+ fd %’ (2.26)
de(v) = (w;/k")k-30(v; t — 1), (2.27)
e e

Before solving this equation we shall briefly review
some properties of the dielectric constant of the
plasma.

3. CRITERION OF STABILITY

The stability properties of the plasma are com-
pletely determined by the analytical properties of
the dielectric constant e (w) defined by Eq. (1.4).
We can rewrite this equation in a simpler form by
making use of the “barred” functions introduced
in reference 1. The barring operation associates
with every function of the vector v and with every
wave vector k a barred function f(v), which is the
integral of the original function f(v) over the com-
ponents of v perpendicular to k: '

7o) = f av (v — k-v/bB)f(v). 3.1

Writing also

Fo) = 8f6)/o,

we can re-express the dielectric constant as follows
(dropping the subscript k):

2 © -7
%% f_w & Vq;—-(vzv !

The analytical properties of this function result
from those of the Cauchy integral

o(w) = %ﬂf_:dv—&-

vy —w

(3.2)

e(w) = we S,. (3.3)

3.4)

It is well known that such a function is regular for
w lying in the upper half-plane S,, and tends to a
definite limit &~ (w) for w approaching the real
axis from above. This limiting value is given by
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%
4 A Fic. 2. Contour of integration
% T, for the analytic continuation
of &(H)(w) into S..
) w
& (w) = % f dv 8.0 — Wf(), wreal, (3.5)

where 6.(z) has been defined in (1.3). Moreover
formula (3.4) defines, for w & S_, a function regular
in S_ which, for w approaching the real axis from
below, tends towards

7 (w) = —% f_: dv 6_(w — »)f(¥), wreal. (3.6)

Thus, the Cauchy integral (3.4) has a discontinuity
along the real axis, the jump being given by the
Plemelj formula

" (w) — 7 (w) = f(w). 3.7)

Thus, ®(w) can be regarded as a two-valued ana-
lytical function, for which the real axis is a cut. The
branch ®*’(w) is defined by Eq. (3.4) for w & S,
and by Eq. (3.5) for w real. It can, in general, be
continued analytically into S. by taking the inte-
gral (3.4) on a different contour I', shown in Fig. 2,
instead of the real axis

& (w) = — _L

, weE S.. (3.8)

I‘+
Similar considerations obviously hold for the branch
7 (w).

After this brief mathematical review, we conclude
that the dielectric constant ¢ (w) is a regular func-
tion of w in the upper half-plane, but will have
singularities in the lower half-plane.

It is well-known in the theory of plasma oscilla-
tions that if ¢"(w) has zeros in the upper half-plane,
the plasma is unstable. In the present paper we will
consider only unstable plasmas of the following
simple type: We assume that the velocity distribu-
tion is such that the dielectric constant has a single
zero . in the upper half-plane

$o = Wo+ %y, Y0 >0 (unstable). 3.9)
We will therefore write
ew) = (w— et (w), (3.10)

where ot (w) is regular and different from zero in S,.
We will also encounter a “minus-dielectric con-
stant” € (w); it is precisely this function which
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enters Eq. (2.25) as the coefficient of Fy(v; w).
€ (w) is defined by formula (3.3) for w & S_. It
is therefore regular in the lower half-plane and has
singularities in S.. It satisfies the relation

e W) = [¢" @9,

the star denoting complex conjugation. Hence for
an unstable plasma the minus dielectric constant
has a zero in S_;

€W = — o (),

(3.11)

(3.12)
with
(3.13)

Before concluding this section, the following re-
mark is in order: The function ¢ (w) has a (possibly
infinite) set of zeros {; in the lower half-plane. In
normal situations the closest of these zeros are,
roughly speaking, at an average distance w,/k from
the real axis (k being some average wave vector).
This distance will be considered as large, because
w,' measures the short time scale in the ring ap-
proximation (see reference 2). As the plasma is
stabilized the zero, {, moves down towards the real
axis and eventually crosses it; from here on the
plasma is stable. However, the zero [, still retains
a distinct property as compared with the other zeros
¢; (which are presumably not much affected by the
stabilization process): it remains close to the real
axis for a certain time. This remark will prove im-

portant in Sec. 6.

- = = we — Vv,.

4. SOLUTION OF THE INTEGRAL EQUATION (2.25) IN
THE STABLE CASE

In order to evaluate the integral in Eq. (2.24),
we must know the function Fy(v; w) for values of
w lying on the contour C of the inverse Laplace
transformation, i.e. above all the singularities of Fy.
Physically, we expect that in the stable case Fy (v; w)
has no singularities (in w) located in the upper
half-plane. If this is true, we can pull down the
contour C and bring it on the upper edge of the real
axis. A detailed justification of this process will be
found in the next section. The advantage of this
operation is that the Fredholm equation (2.25) be-
comes, in this case, a singular integral equation of
Cauchy type which can be solved in closed form by
using well-known techniques.'®"** The limiting form
of Eq. (2.26) is obtained by using the Plemel]
formulas in the form

18 N. I. Muskhelishvili, Singular Integral Equations (P.
Noordhof N. V., Groningen, Holland, 1953).

19 8. G. Mikhlin, Singular Integral Equations, Transl. Am.
Math. Soc., No. 24 (1950).

R. BALESCU

@.1)

lim = Frid.(z).

et L + 1€
Equation (2.25) thus becomes

€ (v — wFk(v;w)
— i dy (V) f dv, 5_(k-v — kw — k-v,)

X F_w(vy; w) + qu(v;w). (4.2)

This equation has exactly the same form as the
equation derived by Guernsey’ using a different
method (it can be derived from his Eq. (21) by the
substitution k — —k, k' — k). Although he also
considers inhomogeneous systems® his method is
restricted to systems close to equilibrium. For this
reason, the coefficients €, di, and ¢, in his equation
are expressed in terms of the Maxwell distribution
of velocities. Our present method does not rely on
such an assumption, and therefore the coefficients
are functionals of the time-dependent distribution
of velocities (which is however retarded in time).
The possibility of relaxing the assumption of small
departures from equilibrium is, in our opinion, an
important generalization. Only with such a method
can we envisage the possibility of studying unstable
systems which are intrinsically very far from thermal
equilibrium.

We now note that Guernsey’s method of solution
(Sec. IIT of reference 7) depends crucially on the
fact that ¢ (») [or 2 D7 (u) in his notation] has no
zeros in the lower half-plane [see the passage from
(52) to (53), and from (55) to (58) in reference 7).
Hence, for stable systems, Guernsey’s method of
solution can be taken over directly in our case and
results in the following formula™

2x(v; w) () [
pA— + =t A ‘/:w dv, _(v — »)

Fy(v;w) =
[Gu(y; w)]s — [Gox(—=» + w; 'w)]—
é+<V1)é—(V1 - w)

In this and subsequent equations, » denotes the
component of v parallel to k:

v = k-v/k.

X 4.3)

The barred functions have been defined by (3.1).
The functions bearing a subseript + or — are
defined as follows: Given an arbitrary integrable

20 An extension of the present method to inhomogeneous
systems will be published soon.

2 An alternative method of solution,
Guernsey’s, can be found in reference 2, Appendix 8. It is
based on the properties of the Van Kampen Case eigen-
functions of the Vlassov equations.

simpler than
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function f(v) of the real variable », it can be split
uniquely into a difference of a “plus function” and a
“minus function’:

o) = 1.6) = 1-0),

having the following properties: A plus function has
a regular analytic continuation into the upper half-
plane 8. ; correspondingly, the analytic continuation
of f_(») into the lower half-plane has no singularities
there. From our discussion of the previous section
it follows that the Plemelj formula (3.7) provides
precisely this decomposition. Hence,

(4.4)

1
fu0) = 5 [ dn 8.6 = w6, @5)
Using the definition (2.28) as well as (4.1), it is
easily shown that Eq. (4.3) can be rewritten as
follows™ [see Fig. 3(a)]:

qx(V; W) wp
€l — w + 4mck’

Fy(v; w) = deEV) fdz/, 5_(v — »)

ol — W) — o-(n — we!l)
e)e (, — w

(stable;

X

4.6)

In this formula it is readily verified that Fy(v; w)
has no singularities (in w) in the upper half-plane.
Hence, as stated at the beginning of this section,
Eq. (4.6) as it stands is also, for w € 8., a solution
of the original Eq. (2.25).

w real).

5. SOLUTION OF THE INTEGRAL EQUATION (2.25) IN
THE UNSTABLE CASE

We are now in a position to see why the previous
method fails in the unstable case. The main idea in
the previous paragraph was to replace the solution
of the original Eq. (2.25) by the solution of the
simpler Eq. (4.2), obtained for real w. Suppose now
that the system is unstable,ie. {. € S, and {_ € S_.
The auxiliary Eq. (4.2) can still be solved exactly.
The solution will actually no longer be (4.3), because
the index of the singular integral equations appearing
in Guernsey’s paper changes. However, there exist
standard methods'''® for solving the problem in
closed form even in this case, and it turns out that
one obtains the stable terms (4.3) plus two extra
terms. The main point of the discussion is the fact
that Fy(v; w) has now a polein w = » — ¢_, and
F_y(v; w) has therefore a pole in w = » + {., both
located in the upper half-plane. This can be seen

22 Tn handling double principal-part integrals, the Poincaré—

Bertrand theorem!®:1® must be used when the order of inte-
grations is changed.
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_ Fre. 3. Contours of integration for Fi(v; w) in various
situations. (a) stable plasma, w real; (b) stable plasma, w €8.,;
(c) unstable plasma, w € S,; (d) unstable plasma, w real.

already in the first term of (4.3). It will be easily
understood that the solution of Eq. (4.2) is no longer
a solution of (2.26). Indeed, consider the first term
in the . h. s. of the latter equation, which contains
the integral

© F—k(‘”x?‘w)
f_wdvl nw—v+w’

This Cauchy integral has a cut on the real axis
Imw = 0. But if F_x has a pole in w = » + ¢,,
this integral contains at least some terms of the form

® (v ; w)
f_mdpl hh—r+we —w+ )

Such an integral has a cut on the line Im w = v, > 0.
Hence, by replacing the previous integral simply by

T'i dVl ‘b(yl : w)

e (V1~w+§+)

Imw > «v,.

Im w > v,.

8.y —w — ), wreal,
for real w we are no longer on the same branch of
the function as given by the previous expression
for Im w > v, (see the discussion in Sec. 3). The
auxiliary Eq. (4.2) is therefore noi the analytic
continuation of Eq. (2.25). Hence the analytic con-
tinuation of the solution (4.6) for Im w > +, does
not satisfy the original Eq. (2.25) in the case of
unstable plasmas, as it did in the stable case (where
the cut Im w = v, lies below the real axis.)
However the knowledge of the stable solution
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enables us to obtain the solution in the unstable
case too, by appropriate deformations of the con-
tours of integration. Consider again the stable case,
and let w be on the original Bromwich contour C,
above all the singularities of F: Eq. (4.6) provides
the solution in that case. Let us introduce the follow-
ing abbreviation:
_ 2

. —_ g —P
R(”} w) - 1471'26162
2lv — W)p.6) = ov — LK)

o (e (v — w)

X 6.1

Then the solution is [see Fig. 3(b)]

0 (V; W) + . di (V)

Fy(v;w) = e — ™
® _ Ry, ; w)
X j;m dv, 6_(v — ») =) — v =

(stable; Imw > |yo). (5.2)

Let now ¢, move into the upper half-plane and ¢.
into the lower half-plane, keeping w constant. As
long as w is sufficiently far up in S,, Eq. (2.25)
changes continuously in this process. Hence in the
unstable case, the solution of Eq. (2.25) will be the
analytic continuation of (5.2) for ¢, € S.. The
latter is obtained by deforming the contour of the
v, integration as shown in Fig. 3(c):

Folv;w) = gx(v; ) + %idk(v)

ey —w
_ R(y; w)
X o = e — e — 1)
(unstable; Imw > v,). (5.3)

This equation is the solution to our problem. For
further calculations, it is usually convenient to have
expressions in terms of real w. We therefore move
down the contour € and bring it on the upper edge
of the real axis, keeping now ¢, and {_ constant.
The pole w + ¢- thus moves into the lower half-
plane, and the analytical continuation of (5.3) is
obtained by deforming the contour of integration
into the contour I'; shown in Fig. 3(d). The result,
expressed in terms of an integral over the real axis,
is therefore

Fy(v; w) =

X {% ‘/: dv, 5_.(v — ») o

a(v;w) | 2m
co—w & W

Ry, ; w)
- §-+)(V1 - w = i‘-)

R. BALESCU

R(¢.; w)
TwF - 6=t
" Rw + ¢ ;w }
@+t — )6 — - —w)

(unstable; w real). (5.4)

This is the final form of the solution. Our initial
statement can now be verified a posteriori: (5.4)
is not a solution of Eq. (4.2).”

6. KINETIC EQUATIONS FOR WEAKLY UNSTABLE
AND FOR WEAKLY STABLE PLASMAS

Equation (5.4), substituted into Egs. (2.24) and
(2.23) provides the explicit form of the kinetic
equation for unstable systems. It is an extremely
complicated non-Markoffian equation. [Remember
that all functions ¢(v) occuring in (5.4) are evaluated
at time ¢ — r.] The equation can, however, be ap-
preciably simplified in the case of “weakly unstable”
plasmas, a concept which will now be defined. Assume
that the imaginary part of the ‘“unstable” zero of
the dielectric constant v, is much smaller than the
imaginary part of the stable zero closest to the
real axis, which we denote by v..; the latter has been
assumed to be of order w,/k, i.e. %y, measures the
short time scale of the plasma.:

Yo K [vm| & w,/k. (6.1)

We also assume (this must be verified in the result)
that if (6.1) is satisfied at the initial time, it remains
true at all later times, as long as vy, > 0.

We can now distinguish in (2.24) a slow process
(described by the residues at the unstable poles)
and rapidly damped transient processes. Hence, if
we are interested in times much longer than o’
we can drop the latter contributions. Moreover, as
was shown in Sec. 2, we can use the Markoffian
approximation (2.21), by setting r = 0 in all factors
¢(t — 7) appearing in the function F,.. Hence (2.24)
becomes

o

tkwt
Fy(v; w).

" (6.2)

Fe(v; ) = —%i/;dw
However, we are now interested in times which
can be of the order of (£v,)™* which is much longer
than the period of a plasma oscillation. We must
therefore take into account not only the residue in
0+, but also the residues at the unstable poles.

In order to evaluate these residues, we first inte-

% An_ alternative, completely independent method of
summation of both stable and unstable rings can be found

in reference 2, Appendix 10. It is based on a factorization
theorem proven by P. Résibois, Phys. Fluids 6, 817 (1963).



KINETIC EQUATION FOR AN UNSTABLE PLASMA

grate explicitly over », the second term in Eq. (5.4).
This is most easily done by using the decomposition
of R(»; w) (regarded as a function of ») into plus
and minus parts according to the Plemelj formula
(4.4). Using also the expression of §_(z) given by
(4.1) and closing the contour of integration, we
obtain

) = (T3 0)
Fk(v) w) - e"(p -_— ’II))
- B R_(v; w)
+ % dk(V){ v—w— ) —t)

_ R_(¢.;w)
(w + s‘- — &) — &)

R.(w+ ¢.;w) }
T wTs - 06— ¢ —w

Substituting this expression into (6.2), the Laplace
transform is easily calculated by the method of
residues. Noting that ¢x(v; w) and R. have poles
far down in the lower half-plane, thus giving rapidly
damped terms which can be neglected, we obtain

6.3

_ 2(v; 0) {_ R_(; 0)
fuv; ) = L0+ o |~
J;P«mm_émum}
21y, 2l v— {-
et 2m Rt —¢)

+ —é?y? k du(v) v — s
e—ik(y— t-)t {_ Qk(v; y — §'_)
R (5
2’”d « )————(” ”_”{f )}. (6.4)

This expression substituted into (2.23) provides the
general kinetic equation for weakly unstable systems.
It consists of a term independent of time [except
through ¢(v; )], an exponentially growing term,
and an oscillating term which is exponentially
amplified.

Before discussing this equation further, we note
the following important fact: After stabilization of
the plasma, the formerly unstable zero {, moves
into the lower half-plane. However it remains for a
certain time much closer to the real axis than all
the other zeros of ¢ (w). Hence, if we want an
asymptotic description of such a ““weakly stable”
plasma to the same degree of precision as (6.4),
we must retain in (6.2) the residues at the poles
related to {., in addition to the residue in w = 0
which is considered in “normal”’ stable plasmas.
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But in the stable case, Fx(v; w), regarded as a func-
tion of the parameter {,, is the analytic continua-
tion of this same function for the unstable case.
Hence the expression for F.(v; f) has the same
analytic form (6.4) in both cases, as can also be
verified directly from (4.6). Of course, in the stable
case, { € 8., - € 84,7 < 0.

We now proceed to simplify the kinetic equation.
We first note that

____R;0 J_ﬁxgm_mwm§
=) =) 247, v— {4 v— (-
L s —» R(;0)
*2fd*¢( O P PR
1 [R(.;0) mmm}
21%{1/—52 TS

It is easily shown that the bracketted term in the
r. h. s. is an odd function of the wave-vector k;
hence it does not contribute to the kinetic equation
(2.23).

Consider now the last term in (6.4), proportional
to exp [—2k(v — {-)t]. There is a certain incon-
sistency in retaining rapid oscillations in an asymp-
totic equation valid for times ¢ >> ;. We must in
some way smooth out these rapid oscillations, and
retain only their slow systematic growth. This can
be achieved by noting that ¢(v; ) is actually a
distribution in the sense of L. Schwartz: the phy-
sically relevant quantities are integrals of products
of ¢ and of some function of v. Let U(v) be such a
function, which we can assume to be an entire func-
tion (in all physical applications U(v) is a poly-
nomial). Let us call » and v,, respectively, the
components of v parallel and perpendicular to k.
Whenever required by clarity, we will write funec-
tions f(v) of the vector v in the forms f(v,, »).
Multiplying now both sides of the kinetic equation
(2.23) by the test function U(v,, ») and integrating
over v, the last term in (6.4) gives a contribution
of the following form to 8.{U):

© —ik(v-t-)¢
f_ K o e {fl(,,) + - fz—(V)sm_}' 6.5)

For positive times the contour of integration is
closed in the lower half-plane. In the unstable case,
the pole v = ¢_ is thus within the contour, whereas
v = {, is outside. The functions 7;(v) and f.(») have
poles far down in the lower half-plane, and thus
give rapidly damped residues which are neglected
in order to be consistent with our approximations.
This asymptotic result of cutting all the poles but
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the one in ¢_ is achieved by replacing the integrand

in (6.5) by
Q@)+’“)}

Consider now the stable case. The pole » = {_ is
now outside the contour whereas » = ¢, has moved
inside. An argument similar to the previous one
shows that the asymptotic form of (6.5) is obtained
by replacing the integrand by

14

1 P R L f2(¢4) .

v— {y [P

As a result of this discussion, the consistent asymp-
totic forms of the kinetic equation (2.23) are

wm»=—¢fﬁv%@@&ﬁz

€@
T _ R(Vl; 0)
+F 0 [ ol = o S
1 [ @, ¢50
T [ ()
i R@Oq
+ 3 dk( \Z% g- ) 217
1 2_TF_’L 2kyot R(fﬂ' & — f—)}
tr= &k du(v)e 21,
(unstable), (6.6)
and
R = 2 —2. .o 4 9x(V; 0)
d.o(v; 1) = %f&k&a{qw
+Z @ [ dn o0 = »)
R(; 0) 2m 1
TR R R ——,

ezk%‘R(g‘ﬁ $r —
2¢y,

x ) (4,) — dulv, m]}

(stable). (6.7)

Let us now write these expressions more ex-
plicitly. We first note that the residue in w = 0 is
exactly identical in form to the function Fy(v; 0+)
appearing in (2.22); hence it gives precisely the
“normal collision term” €{e} defined in Eq. (1.2).
The other terms, rewritten explicitly by using (5.1)

give the following expressions:
dw(v; 1) = elo} + glo; t}, (6.8)

with

R. BALESCU

4ecfdklc‘ka{ 21 B ev,, &)

Ile; 8} T w, 2 — o (5

(5
¥ Sl =t oo ()

D) .
e, k asO(V)}

k- a¢(v1) g-—)

+

(unstable), (6.9)

and
D(®)
kv — kt.
X k-3fp(v) — o(vi, §,)} (stable).  (6.10)

The time-dependent coefficient D(t) is defined in
both cases by

gle; 1) = 2 [k *k-a

et _+(§-+) gb-(g'_)
2ty " ($1)o (52)

7. MECHANISM OF EVOLUTION

D) = (6.11)

The discussion of the detailed mechanism of evolu-
tion of an initially unstable plasma has to await
further investigation of the properties of Eq. (6.8),
in particular, the study of some simple examples.
However, we may draw some qualitative conclusions
from the form of this equation.

Equation (6.8) has the general structure of a
Fokker-Planck equation, i.e. it contains a friction
term and a diffusion term. A characteristic feature
of the equation is the exponential time dependence
of the diffusion and friction coefficients. The latter
are, moreover, functionals of the distribution func-
tion; hence their form changes as the latter function
evolves in time. The zero {. of the dielectric constant
is itself a functional of ¢(v). Hence the overall
process is a very complex nonlinear friction and
diffusion phenomenon in velocity space.

We keep in mind'®™'* the fact that an unstable
plasma is characterized by a velocity distribution
with two humps, which are sufficiently widely
separated. Both friction and diffusion are stabilizing
agents: the first brings the two maxima closer to-
gether, the second one broadens them. As a conse-
quence, the zero {, will move down until the critical
separation of the maxima is attained. At this point,
the zero {. attains the real value w, (neutral sta-
bility) and the plasma is stabilized. The exponential
time dependence of the friction and diffusion coeffi-
cients make this process more effective the more un-
stable the plasma (i.e. the larger v,). The transition
through the neutral point will be discussed below.
The evolution of the weakly stable plasma resulting
from this process then continues towards thermal
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equilibrium under the combined action of the normal
collision term and of the extra term of Eq. (6.10).
The latter becomes less and less effective as the
plasma becomes more and more stable (i.e. as ¢.
moves down in S.). In the final stage, this term
becomes negligible and the plasma evolves towards
equilibrium under the action of the normal collision
term alone.

We now study more closely the transition through
the neutral stability and show that the two forms
of Eq. (6.8) go continuously into one another. The
discussion is most clearly performed on Egs. (6.6)
and (6.7). We first note that, although the first
bracketted term in the r. h. s. has the same form in
both equations, its behavior is different in stable
and unstable cases. Indeed, introducing again a test
function U(v) and integrating over v, as was done
in Sec. 6, we obtain schematically the following
contributions:

(@) gu(vy, £-;0)/e7(¢-) + Sum of residues

at poles of ¢, in S_ (unstable case),

(b) Sum of residues at poles of ¢, in S_
(stable case).

We see that there is an extra term in the unstable
case. But the contribution of this extra term is
exactly canceled by the third term in (6.6). Hence
we may write the following equivalence relation in
the sense of distributions:

{qk(n, 0 _qlvy, si;O)}
e“(v) (v - g‘—)q_(g.-) unstable

"y {qk(n, 2 0)}
€ () stable>

It is easily seen that the integral terms in both equa-
tions tend towards the same limit as v, — 0. Consider
now the last two terms in Eq. (6.8). They have
the following limit as v, — 0:

21

% {—718,. (v — wo) du(vy, W) + 716_(y — wy)

R(wui 0) .

X dk(v.Li IJ)(]_ + 2k70t + t )} 2,[:,),0

1019

It is easily verified that, for reasons of parity in k,
only the & part of the §. functions contributes to
the kinetic equation. Hence the divergent parts
cancel each other and there remains a term pro-
portional to dx{v,, wo). This term, however, vanishes
because &'(w,) (for real w,) is the imaginary part of
€' (w,), and this implies in turn that k-8 ¢(v,, w,) =0.
The same argument shows that the exponential
term in (6.7) also vanishes at neutral stability. This
achieves the proof that the two forms of the kinetic
equation go over continuously into one another.

In conclusion, we may point out that Eq. (6.8)
deserves special interest from the point of view of
the general nonequilibrium statistical mechanics. It
is a Markoffian equation, in which however the non-
Markoffian contributions leave a trace even for
long times. Such a situation is not possible in the
case of ordinary gases with short-range interactions
(where the poles of the resolvent are fixed only by
the interaction potential). In a plasma, however,
the position of the poles of the effective resolvent
depends on the form of the velocity distribution,
and can move quite close to the real axis or even
eross it, as it does in the present problem.

We intend to study in subsequent papers the
further details of the mechanism of evolution of un-
stable plasmas, as well as other aspects and ex-
tensions of the present theory (density correlations,
inhomogeneous systems, ete.).
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Applying Hunziker’s method to the case of Dirac potential scattering, we prove analyticity of
the 7 matrix in energy and momentum transfer. Our conditions on the potential are somewhat weaker,
and the domains of analyticity contain the known ones as special cases.

I. INTRODUCTION

E discuss the analytic properties of the scatter-

ing amplitude, or the T matrix, for the scat-
tering of a positive energy Dirac particle from a
central potential.

Following a suggestion by Hunziker,' that the
method he developed to discuss the Schridinger
scattering amplitude be also applicable in the Dirac
case, we use essentially his method. To derive the
regularity properties of the 7' matrix, we use directly
the general functional analytical properties of the
integral equation and its kernel. No series develop-
ment is used. Since the only known discussion of
this case is the one of Khuri and Treiman,” we adopt
their notation basically.

In the second section, we consider the scattering
equation as a functional equation in the space of
the continuous and bounded functions. We then
establish conditions on the potential, in order that
the integral operator KV be bounded.

We can show that KV (k) is also completely con-
tinuous for k£ in the upper half-plane. Therefore, the
Fredholm alternative applies. From this we get all
the necessary information on the wavefunction that
we need to discuss the transition matrix.

We show that, for a wide class of potentials, the
T matrix is regular in the energy and momentum
transfer variables, each in an established domain.
The restrictions on the potential are naturally
stronger than in the Schridinger case, but less re-
strictive than in reference 2. Since we have to deal
here not only with a single equation but with a set
of coupled differential equations, the discussions are
somewhat more involved than for the Schrédinger
equation. In order to preserve continuity, we have

T This work is based in part on the author’s MS thesis,
submitted at Eidgendssische Technische Hochschule, Switzer-
land, (September, 1961).

* Supported by the U. 8. Air Force.

! W. Hunziker, Helv, Phys. Acta 34, 593 (1961).

(19’55. N. Khuri and 8. B. Treiman, Phys. Rev. 109, 198

not omitted some short proofs which are given
already in Hunziker’s work.

II. SOME PROPERTIES OF THE DIRAC
SCATTERING EQUATION

A. The Dirac Scattering Equation

Consider the scattering of a Dirac particle of
mass m, total energy E, in a central field V(r). Let
us write the Dirac equation in the following form
h=C=1):

(E — Hp)y = Vy. D

Here ¢ is a four-component spinor wavefunction and
Hp, = —ia-V + gm

is the free-particle Hamiltonian. @ and B8 are the
usual Dirac matrices. Denote by ¢ plane wave solu-
tions of the free-particle equation

(E - HD)¢ = Ov

which are characterized by the energy and momen-
tum eigenvalues, as well as by their spin, namely

¢ = u(l)e™™
u(k) is a four-spinor normalized to
uly = 1,

with k real and k = |k| = (B — m®)} E > m.

To describe the scattering of a particle with a
certain initial momentum and spin (described by ¢),
we look for a solution of (1) that has the asymptotic
behavior of a plane wave plus an outgoing spherical
wave:

| Bl s S Gy} 2

where f,, is an operator in spinor space. This bound-
ary condition is automatically incorporated in the
integral equation formulation of (1) which in opera-
tor notation can be written

v=9¢+ Hm (F — Hp, + i ' Vy. 2)

40
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The formal solution of this equation is

¢v=¢+ lim(E — H, — V + ie ' Vo.
e+ 0
We only discuss the scattering of particles (£ > m)
explicitly, the connection with antiparticles is given
in reference 2.
Using the outgoing wave Green’s function

Go(x,y) = (—1/4n)(]x — y|)7" exp [k [x — yl],

we can write (2)
0@ = 6,0 — 1= [ ® = Vs + g,

X (Ix — y))7" exp [k |z — yIV@V.G) d°y. 3)

Here we have just for once indicated the spinor
indices (Greek subscripts). We shall drop them from
now on, and all our further notation has to be con-
sidered as a matrix notation, with the straightfor-
ward implication on norms and absolute values to
be taken for each matrix element and spinor com-
ponent.

Our method allows us to carry out the discussion
of the functional analytical properties of the Dirac
scattering functions directly on Eq. (3). We do not
need any further iterations or the second-order
equation. Let us introduce in (3) the following
notation:

¥(x) = u(k) exp [k-x]

+ [ @y KapVom, @
with
K(x,y) = [E + Bm — 104(8/0x,)]Go(x, ¥).

In this form one could extract the bracket from the
integral. Since integral operators are much handier,
however, than differential operators, we leave it
and do also the differentiation on G4(x, y). Thus we
get for the kernel K, which we split for later use
into two characteristical terms,

K(x,y) = (E + Bm + ka H)Go

. T Y G,
+ e : '
&=yl =yl

In the operator notation, (4) becomes
v=09¢+KVy. ®)
B. Conditions on the Potential

In this section we establish the conditions on the
potential, in order that the operator KV has a
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finite norm. We show that, for the complex k, KV
is completely continuous in Im k& > 0. These are
the conditions on an integral equation of the second
kind that the Fredholm alternative applies.

Define the norm of ¥ by

[l¢ll = sup [¥:(x)]. (6)

The x means that we have to take the supremum
of the absolute value for all x, and the 7 is set to
indicate that this has to be done for all spinor
components.

At first we shall look for a solution of (5) in the
space of C which contains all continuous and
bounded functions. C is a complete space, normed
with (6); therefore, we are working with elements of
a Banach space.

Define the norm of an operator O by

|10[] = sup [[O¥/] el < 1.

We prove in Appendix I that this norm is finite for
our operator KV in (5) under the following assump-
tions on the potential:

v &€ C and

[ @l < -, L
fwa: V@) de < , II.

f | V(E@)|'"dr < o. II1.
0

M is an arbitrary point (0 < M < ), and III
has to be fulfilled for some number ¢ (> 0), which
may be chosen arbitrary small.

The question now arises if condition III is actually
stronger than I and II together, or if it is only a
consequence of our technique.

We can show that for potentials which in the
neighborhood of a singularity can be given by a
term Az™*, III is fulfilled if k is such that I and
IT are fulfilled.

Proof: (a) 1 is stronger than III at z = 0.

From I we have |V (z)| < 1/z* with k < 1. III gives
ff a0 dy < o, with bk = 1 — a. We
have ¥’ = 1 — ae — « and this is smaller than 1
for e < 1.

(b) II is stronger than III at infinity.
From II we have |V(z)] < 1/2* with & > 1.
III gives: gz 2" dy < w, 1 — a = k.
This is finite if 1 + ae + a > 1, 0r 0 < ¢ < 1.

(¢) T and II together are sufficient for III
at any intermediate point z,, (zo # 0, T, # ).
From IorII: [ |V(2)|dx < =.
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From III: [ V(@) dz < =, if we assume
that V(z) has an insulated singularity at z,.

A transformation (y = x, — z) brings the singu-
larity at the origin, where we are left with the sum
of two integrals of the form

j: |V(x)['** de.

But from I we have |V(z)| < 1/x", where k <1 < 1.
In order that also III exists, we must have k --
¢ < 1+ € < 1; this can always be done by choosing
a proper e. Q.E.D.

For an integral equation of the type (5) in a
normed vector space, the Fredholm alternative
applies, i the kernel is completely continuous. That
is, either

(i) the resolvent R = (1 — KV)7, ||[R|] < =
exists,
or

(i1) the corresponding homogeneous
(system)

equation

v =KVy @

has a nontrivial solution.

Correspondingly, the domain of the % values,
which is, so far, only the real axis, is divided into
two complementary sets:

(i) the domain of the resolvent, which contains
those k values for which the first alternative is valid,
and

(ii) the spectrum which consists in the & eigen-
values of the operator KV.

We show below, that we do not leave C if we con-
sider the homogeneous system (7) also for complex
values of ¥ in Im & > 0. In Appendix II we prove
that our kernel KV (k) is completely continuous in
Im k& > 0. Then the Fredholm alternative provides
a way to prove uniqueness of the solutions of (5).
One has only to show that the spectrum of (7) does
not contain any real points.

C. Bound States (Eigenvalues)

The aim of this subsection is naturally to show
that there are no real k eigenvalues except for £ = 0.

Let us, for any % in Im k& > 0, consider the solu-
tions of the homogeneous equation (7).

Theorem 1. All ¥ & C which allow an estimate of
the kind (¢ = Im k)

[Yvx)]| < A */z) for > =

form together a linear subspace T C C, which is
mapped into itself under KV.
Proof: 1et ¢ = KVy, ¢y € T. Then |px)] <

ANTONIO PAGNAMENTA

[IKV||. ¢x)| < A(e **/x), since ||KV|| is bounded.
Theorem 2. All solutions of (7) are in T.
To prove this we split V into a part V, which has
finite range and a rest V.

V="V+ 7. 8
With this we get
v=KVy =KV + KVy.

We can choose V, so that ||[KV|| < 1 and it is also
clear that KV = ¢, € T.

Then ¢ = ¢ + KVy. But this is again an inte-
gral equation of the Fredholm type. Since ||[KV|| < 1,
it can be solved by iteration, therefore, it has a
unique solution in C as well asin 7. But since T C C
they coincide; therefore ¢y € T.

In the case Im & = a > 0 the eigenfunctions are
square integrable and we can interpret them as
bound states. Then with the well-known procedure
one can also show that the &k eigenvalues are pure
imaginary. Carter’ has shown that they lay between
0 < k < vm and can only have a limiting point
at £ = 0. The possibility of a decomposition of V,
as done in (8), is sufficient to prove that there are
only finite-many singularities in Im k& > 0.*°

For the real part of the spectre we would like to
show that it is empty except for the point k¥ = 0.
This would secure the unique solvability of the
scattering equation.

The proof for a potential with finite range is
easy and exactly the same as in the Schrédinger
case.” The proof for an arbitrary central potential
obeying conditions close to ours {I, II, III] has
been given by Carter.’ He uses the fact that, for a
central potential, the Dirac equation can be sepa-
rated, and then discusses the set of ordinary dif-
ferential equations. Since this proof is very involved,
we do not give it here.

For all the following, we make the assumption
that the eigenvalues of the homogeneous scattering
equation in the E plane lie on the real axis between
—m and m.

III. REGULARITY PROPERTIES OF THE T MATRIX

For a central potential which satisfies the condi-
tions I, II, and III, the inhomogeneous scattering
equation (5) has, for every real & > 0, exactly one
solution which is continuous and bounded and com-
posed by a plane-wave and a scattered-wave part;
_3—]).—8._Carter, Thesis, Princeton University, Princeton,
New Jersey, 1952 (microfilm).

4 A. Grossman and A. T. Wu, J. Math. Phys. 2, 712 (1961).

5 F. Riesz and B. S. Nagy, Vorl. Uber Funktional Analysis,
Nos. 66-76.
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v =9+ ¥, ©

The scattered-wave part behaves at least under
the further condition®

[ vivwla < = v,
for large z asymptotically as an outgoing spherical
wave,

¢, =1 exp [thr)f,u for large r,

where

fool B, Oul) = T (B + m + oK)

x [ e Ve &,

kK = k(x/z) ¢ = Y&, k), E=<xF% + m)

The T matrix, also an operator in spinor space, is
derived from the transition matrix:

M, = (¢, Vi) = uTu,.
Using (9), this gives the following representation:

Ti=VE -k + @, V). (10)

Here V(k' — k) denotes the first Born approxima-
tion and is just the Fourier transform of the po-
tential with respect to the momentum transfer be-
tween initial and final plane wave.

We wish to discuss the analytic behavior of
T(E, cos 6) as a function of the energy and the
cosine of the scattering angle, or of other suitable
scattering parameters. To this end we first investi-
gate the behavior of ¢ (k, x) as a function of (com-
plex) k.

A. Regularity Properties of the Resolvent

Under the above conditions we may write

v(k) = E(k)o(k), an

where R satisfies the Lippmann—Schwinger equation:
R = 1 4+ KVR. The three functions in (11) are ele-
ments of a normed vector space and not just com-
plex numbers. But it is well known"'® that the con-
cept of analyticity can be applied to elements of a
Banach space, practically by just replacing the
absolute value sign by the norm sign. Most theorems
of ordinary analysis, and all which we need for the
following, can just be transcribed in that way.

8 Qur condition IV is necessary at this point since the

Lemma of Pringsheim cannot be applied. [See Pringsheim,
Math. Ann. 68, 367 (1910)].
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Lemma 1. Regularity of KV (k).
The following inequality holds for any %, &' if
their imaginary part is bigger than or equal to zero:

Ieikr

— e < k= K.

Therefore,

IKVG) — KVl < k= ¥ [ 3 V)| dy

+ [k — & fow y V()| dy.

These integrals are bounded under conditions I
and IV. Consequently, KV (k) is a continuous func-
tion of k in Im & > 0. Carrying out a contour inte-
gration in this region, and applying Fubini’s theorem,
which is allowed since the integrals converge uni-
formly in Im k& > 0, one shows that KV (k) is regular
inImk > 0.

Lemma. 2. Regularity of R(k).

If k&, is not an eigenvalue of the scattering equa-
tion, then R(k,) exists, and because of the con-
tinuity of KV (k), we have a complete neighborhood
N of k, in which

IKV(k)y — KV(ko)| < 1/2 |R(ko)|
Let

forall k&€ N.

S = Rk)[1 — KV(k)]
=1 — Rko)[KV(E) — KV(ko)]
=1-H.

Fork € N, ||H|| < % and S™" can therefore be given
by a Neumann series

S'=1+H+H+ -

Since this series converges absolutely and uni-
formly for all k & N,

R(k) = 87" (k)R(ko)

is regular in the whole interior of N. But we already
know where R(k) exists, therefore, we obtain the
following theorem:

R(k) is regular in the half-plane Im k > 0, except
for finite-many singularities on the imaginary axis,
which correspond to the bound states.

B. Regularity of the Wavefunction y

For complex k, exp (skz) is no longer bounded
and the space C is too narrow for the solutions of
the inhomogeneous scattering equation. We there-
fore consider the space €’ containing all continuous



1024

functions ¢’(x) for which the following norm is
finite:

1911 = sup I @)l.

a is a fixed positive number which we fix later. The
correspondence

Y@ = e Y () (12)
introduces an isometric mapping from C on C’ and
vice versa. Now we understand the scattering equa-

tion as a functional equation in C’ and construct,
with (12), the corresponding equation in C:

\//(x) — en‘k *x—azr

s 'klx—yl
- 41r f dy lx
Everything we had up to now is valid for this new

equation, if only we make V'(x) = V(z)e** subject
to the same conditions as earlier V(y); therefore

V(y)e“"tﬁ(y)- (13)

[ e v@lay < =, v.

This is our condition on V(y) and c.

The resolvent of (13) is in € and has the already
known regularity and continuity properties. The
same is true for the resolvent R’(k) of the scattering
equation in C’ because of (12):

¢’ (k) = w(ke™™.

U’ itself, as spinor amplitude of the free-particle
solution of the Dirac equation, is a regular func-
tion of E. It has, however, branch points as a
function of k at k¥ = s¢m. With these exceptions,
¢'(k) is a regular function of & with values in ¢’
in the region |Im k| < «. Therefore,
¥'(k) = R(k)¢'(k)

is also regular in

[Im k| < «, Imk > 0,

k # eigenvalue.

(14

Using (9), we can give the following results:
Vi(k, x) s, for fized X, regular in K in the region
(14), and for any fixed k in this region as a function
of X, continuous and bounded (in C').
C. Discussion of the T Matrix

We introduce as a new parameter, half of the
momentum transfer (A).

A= -8 = A,
P = ik + k) = Pe, P =E — A — m’.

ANTONIO PAGNAMENTA

Here e and e’ are unit vectors. The kernel KV (k)
and the T operator are at first only given for real
values of E and A and for
E > +(m* + AMh

Now we want to consider both functions also for
complex values of the variables £ and A. Since
they are originally defined as functions of ¥ =
+(B* — m’)} we have to make cuts into the
complex-energy plane in order to define them un-
ambiguously. The cuts run from —» — —m and
from +m — -+ «, and we choose the Riemannian
sheet, so that the imaginary part of & is nonnegative
(Im k& > 0). Just above the real axis, the real part
of k is positive for £ > m and negative for £ < —m.
On the real axis for —m < E < m, k is pure imag-
inary.

Corresponding to (10), we separate the T matrix
into the first Born approximation and a rest:

T =Ty + T\E, 8),

o) = VI — 1) = [ dy eV,
This is an even function only of A and regular on
the strip;

[Im A| < .

To discuss T,(E, A), we make a transformation
with the whole scattering equation depending on a
real parameter A. This allows us the most profit
possible from the exponential decrease of Green’s
function,

P = Yo,
The transformed scattering equation becomes
V' =¢" + KV,
'(x) = exp [—iAe-x + i(P + \k)e-x].
K differs from K only in the exponent;
exp (K") = ik[jx — y| + Ne-(x — y)].

We can transfer all the old results on the new
scattering equation if the real part of the exponent
of K*(z, y) is not positive, i.e. if

—1 <A< H1.
So ¢"(E, A, x) is an element of C’ if
[Im A)? + [Im (P + AB)]? < &°.

Then it follows, in the same way as (14),

(15)

VM(E, A, X) 18, for every fired x, an analytic func-
tion in (15), except for two branch points at E =
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+(m® + A" —ihe two culs along the real E axis
and the finite-many singularities in E between —m
and m which correspond to the bound states.

For every pair (E, A) in this region, Y\(E, A, X)
as a function of x is continuous and bounded.

For T,(E, A) we get the following representation:
Tl(Es A) = (¢/1 V‘Pt) = (@!s VK)‘V‘;’A)

T(E, &) = 14‘;1 (E + Bm + ia-K)

X f &'z exp [—iAe’x — i(P + \b)e-x]

X V(@)YNE, A, x).

From the preceding discussion, it is also clear that
(15) gives just the condition that this integral
exists.

Up to the often-mentioned singularities, which
come from the resolvent R(E), T, (E, A) is regular
in the following regions:

(Im AY® + {Im [(E* — A* — mD)}
+NE - m) <o (16)
and
-1 <AL +1.
We see that it is necessary that |[Im A] < a. Then

all pairs (£, A} belong to such a region for which,
furthermore,

[Tm (B* — A* — m?)}| < |Im (B* — m)Y,
because then A can be chosen such that the second
term in (16) vanishes. If, on the other side,

IIm (B* — A° — m»}| > |Im (B* — m?)}],

then this term takes on a minimum for A = +£1
and this minimum is

[Im (E* — A* — m)} — [Im (B — m")*|]".

With this we can give our result:
T, (E, A) is regular in E and A in the
region |[Im A] < «, and
Tm (B — &% — m»}] — |Im (B* — m)}|
< @ — (Im )}

up to the two cuts and the finite-many

singularities between —m and m. an

As an application of the above result, let us show
the form of the domains of analyticity in two special
cases.
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1. Regularity in cos 6 for fixed E > m

For real £ > m, the region of regularity (17) of
T, (E, A) is characterized by

(Im A)? + [Im (B — A* — @)} < o,

The relativistic connection between scattering angle
and momentum transfer is

A = YE®* — mP)(1 — cos 6).
Introducing this we find, for the domain (17),
[Tm (3(1 = cos O
+ [Im &1 + cos N < /(B — m?),
(Im sin 16)° + (Im cos 16)® < &*/(E° — m®).

Let us put 8 = ¢ + %; then cos 6 = cosh ¢ cos ¢ —
1 sinh ¢ sin ¢, and this gives only a condition on ¢:

sinh® 3y < /(B* — m?).

Similar to the Schrodinger case for fixed ¥, cos 8,
as a function of ¢, describes an ellipse with focal
points at 1. The boundary ellipse which contains
the region of regularity is given by sinh ¢ =
/(B — mb).

2. Regularity in Momentum Transfer

For which A may E vary in the whole, bounded
E plane without violating (17)? (17) has to be valid
for E = 0 and that means [A] < a.

We wish to show that this is also sufficient. Put
A = rexp (). Then for all E,

[Im (E* — A* — m*)}|
— |Im (B* — m»| < " — (Im A)*}.
Proof: Introduce a complex parameter Z = a + 4b:
(B — m’ — A} = 4A cosh Z,
(E* — m*¥ = {Asinh Z,
Im (B* — m® — A"}
= r(cosh a cos b cos ¢ — sinh a sin b sin ¢},
Im (B* — m%}
r(sinh @ cos b cos ¢ — cosh a sin b sin ¢).

Now we have to verify that, for all a and b, the
following inequality is true:

|cosh a cos b cos ¢ — sinh asin bsin | < | cos ¢
+ [sinh @ cos b cos ¢ — cosh a sin b sin ¢|.
After squaring both sides,

cos’ b cos” ¢ — sin” bsin’ ¢ < cos’ o + 2 |-+ -].
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This inequality evidently holds.

T, (E, A) 1s, therefore, regular in E and A in the
direct product of the circle |A| < o with the finite
E plane, except the singularities (17).

IV. REMARKS

Reviewing, we see that our conditions on the po-
tential are naturally more restrictive than in the
Schrodinger case, but they are weaker than the
conditions in reference 2.

There is one remark of caution to be made. Since
our discussion proves only regularity in the finite
E plane, we cannot say anything about the behavior
of an expression like

lim T(E).
| E | >
This is, however, necessary for the proof of dis-
persion relations. Khuri® has shown that
lim [T(E)/E] = 0,
JE|—e
at least if the Born approximation converges. Unlike
the Schrodinger case, it is not proven up to now
that, for high energies, the Born series converges,
and to what expression it goes in the relativistic
case.
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APPENDIX I, THE NORM OF KV
Let us put K = K, 4+ K,, where
T — Qi)Go
x —yl/™”

— y: L GO
K== k—ywwk—ﬂ

K1=<E+Bm—|—ica,-

A. Norm of the Operator K,V

Note that
T — Y <1 and a; 1 ?!:H
Ix — ¥ lx -yl

is smaller than some constant N. With this we see
that

Hfand@

‘ < [1Evyiay <

11 + Bm + NB)| [ 16,V] &y,
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Since we only consider central potentials, we can
always choose the coordinate system so that V(x) =
V(z) and |V(z)| = F(z).

With this we have

[ieriay< [ ayre 4 [ 2

|x
Applying the identity
1 z+y
o[ aoenx -5 =5 [ e 1.
we get
Ly o _ o
ar) -y~ "
and
[1aviey < [ ayyrw.
0
[IK, V|| is, therefore bounded if we demand that
the potential V(z) be a measurable function for
which
|V(@)| < F(x) and [ eF@)de < «. 1.
0

B. Norm of the Operator K,V

Here too, the absolute value of the first factor
is bounded by a constant N, therefore,

exp [ik(|x — y|>1H
Ix —

K| <

Let us put o= K, V. Then Hm)u < Ivll-IE@I),
where

HE) = Nf 11(-?/) da
or
1w = N [y 1Va)lg [ 2%

Again |V(z)| < F(z); then with the identity (I.1)
we get

H(x) < gj; dy F(y)glog li f 51 :
or
mn<—J'mwh——maif%;

1+ y/x

f dy F(y) log =y
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But, with S = y/z, we have forall § > 0,
[t — 8] log |1 + 8)/(1 — 8)| < N, const.

Therefore,

H(z) < N, fo " dy F)

® 14 y/x
+ N f dy F(y) log 77—,
A y F(y) gll—y/xl
where we have absorbed all the uninteresting con-
stants into N, and N,. We give an estimate of the
second integral, using Hoelder’s inequality:

[ ay Py tog
= [ WPy 0e -EE) gy

@ 1/p
< l: fo dy y°F "(y)]

PR G

where p and q are subject to the two conditions

1<p,¢g< =,

and
1/p+ 1/¢ = 1.

First we choose ¢ > 1, but arbitrary otherwise.
Then take n = ¢ ', and substitute in the second
integral S = y/z. The integral then reads

5 e )T
0o S -8 '
But this is bounded for any ¢ > 0, because

(a) for S — 0, the integral goes like S*7*.

(b) for § — o, the integral goes like S™“*.

(¢) for S — 1, the integral goes like (log z)¢,

forz — 0.

In the first integral, we put P = 1 4+ € and,
therefore, P/q = ¢, where € > 0, but may be chosen
arbitrary small.

This shows, that ||K,V|| is bounded if we have
the additional conditions on V(z) [|V(z)| < F(z)]

[ F@ds < =, I1.
0

and

f yFy)' " dy < =, e> 0. II1.
0
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The norm of the operator KV is, therefore, bounded
if the potential V(z) is measurable and fulfills the
conditions I, IT and III.

APPENDIX II. PROOF THAT KV(k) IS COMPLETELY
CONTINUOUS

To prove that KV is completely continuous, we
first approximate it in norm with the aid of special
potentials:

V@) = {V(x) forz < R, and [V@)| < M.,

0 elsewhere.

(I1.1)

We discuss R, and M, later. KV = K,V + K,V
as before;

K.V, — K.V|| < N, f 2F(z) dz,
En

and
[|K.V. — K, V||
<N, [ ayFw) + N [y yFe,
En Eq
where

E.={yly>R., or Fly) > M,}.

One can choose here R, and M, one after the other,
such that the right sides of the above equations
become smaller than 1/n. Therefore,
lim ||[KV, — KV|| = 0.
If KV is completely continuous, it maps every
bounded set into a compact set E:

E=A{ele=KVy |yl <1} (112

We prove (I1.2) for the special potentials (II.1).
To show that F is compact, it is enough to show that
the functions ¢ & FE are all

(a) uniformly bounded,

(b) uniformly continuous at any point a,
and, because our region is infinite,

(c) for large z are uniformly majorized by a
function g(z), for which

lim g(z) = 0,

(a) is evident from our proof of the boundedness
of the operator KV. (b) was already shown for K,V
in reference 1. There it was proven that the first
derivatives are uniformly bounded. This cannot be
done in the same way with K,V, since it contains a
term |x — y|. If one differentiates ¢ under the
integral sign with respect to x, the integral no longer
exists. We therefore approximate first K,(r) by a
continuous differentiable function K;(r).
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Take, for instance, (r = |x — y|):

1
Kil) = 4= ¢ 1),
) = {r"‘ for r > 6,
8732 ~ 178" for r < §;
then
lim ||K,V — K;V|| = 0.
30

Proof:
1KV — KVl Ssw i [ 7 dy
x 47r r<é

M - _
+ sup fd 8732 — 67 dYy,

since the contribution for r > § cancel. Solving the
integrals,

|IK.V — K, V|| < Ms§ + %%%’raa = $Ms.

Since ¢ = KVY¥, we have |le. — ¢ul| < M3,
where ¢,; = K;Vy, and ¢, = K,Vy. The functions
was(r) are continuously differentiable and their deriv-
ative can be formed under the integral sign. We get

[0K;/or| < C; < o, forall r, and

therefore,

|0¢s(x)/02:] < 3MR’C; for all x.

PAGNAMENTA

With this we can show the uniform continuity.
Given ¢ > 0, we first choose 8 > 0 s0 that §M$ < ie.
With this, C; is fixed. Then we can choose a number
7 > 0 so that IMR’Csn < 3e. Now if only
|x — a] < 7, we have

le(x) — o(a)] < e®) — @:(x)]
+ [%(x) — ex(a)| + lps@) — o(a)]
et det de= ¢

for all a and all ¢ € E.
Therefore, the functions ¢ &€ E are uniformly
continuous, even for all a, which is more than we

required.
(c) For all ¢ € E: [l¢f| = [[KVY¥|| < [IKV]],

and this is
w1 [ Py NM [ dy
<MIE+em+Np g [ LT[ L

We are only interested in the region z > R; there,
(x—y)"'"<@—-y»' <A -2y <270,
analog

(Ix—y)7 < G
therefore,
llell < M |(E 4+ gm + Nk)| (C./z)3R®
+ MN(C,/z)3R* = g(2).
Q.E.D.
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This paper continues the study of the nature and interdependence of the axioms of relativistic
field theory; attention is focused on the notion of relativistic invariance. The central result of the
present paper is the derivation of necessary and sufficient conditions for a representation of the
covariant free field to admit a unitary representation of the inhomogeneous Lorentz group associated
with the field operator. It is shown that only the standard Fock—Cook representation haa this property.
The relevance of the requirement that the Lorentz group is represented by a unitary family associated
with the field operator is exhibited by an analysis of the covariant representations of Shale and Segal.
These representations involve extremal states which are not pure, and group representations by

intertwining operators.

I. INTRODUCTION

N relativistic quantum field theory® it is natural

to assume, in accordance with the principle of
relativity, that the correspondence ¢(z) — ¢(Az + a)
of the field operators, imaging the change of frame
represented by (@, A), must leave the algebra of the
field operators unaltered, i.e., it must be an auto-
morphism. These automorphisms of the operator
algebra preserve Hermiticity properties and eon-
stitute a realization of the (inhomogeneous) Lorentz
group. In conventional treatments of relativistic
quantum field theory, it is also assumed that there
must exist a family of unitary operators Ula, A)
furnishing a (unitary, true) representation of the
(inhomogeneous) Lorentz group and implementing
the local automorphism:

é(@) — Ula, @)U (e, A) = ¢(Az + a).

Since the representations are assumed to be con-
tinuous, one can assert the existence of the ten
Hermitian infinitesimal generators of U(e, A), and
impose additional spectral conditions on these
generators. It is usually assumed that there exists a
unique invariant state called the vacuum, and that
all other states belong to the continuous positive
energy spectrum of the Hamiltonian (time-transla-
tion) operator. Of course there is no a prior: reason
to insist that the unitary family U(a, A) must imple-
ment the local automorphism. We may, then, dis-
tinguish several distinct concepts that enter the
characterization of a relativistic field:

(1) The local automorphism ¢{z) ~ ¢(Ax -+ a).

(ii) A unitary family U(e, A) furnishing repre-
sentation of the Lorentz group.

. * Supported in part by the U. 8. Atomic Energy Com-
mission.

1 For part I, see E. C. G. Sudarshan and K. Bardakei,
J. Math. Phys. 2, 767 (1961).

(iii) The local automorphism ¢(z) — ¢(Ax + a)
being implemented by the unitary family U(a, A).

(iv) The existence of the (unique) vacuum.

(v) The nonnegative spectrum of the Hamiltonian.
While it is usual to include the requirements of a
unique vacuum and of a nonnegative energy spec-
trum as well as of the local automorphism imple-
mented by a unitary family under the postulate of
relativistic invariance, they are by no means es-
sential. We know of models in which the vacuum
is not unique,’"* and nontrivial interacting models
of quantum field theory exist in which the unitary
family Uf(a, A) fulfills the representation and spec-
trum conditions, but does not lead to the local
automorphism.

It is also generally assumed that the field operator
ring contains the unitary family U(a, A); loosely
speaking this implies that the ten generators can be
“built up”’ using the field operators. This apparently
innocent axiom has the consequence that all theories
with an invariant cyclic vacuum are in fact direct
integrals of theories with a unique invariant vac-
uum.’ In the major part of the investigations in
the sequel we shall assume that the family U(a, A)
is contained in the operator ring generated by the

2 It is amusing to note at this point that not only is the
uniqueness of the vacuum not essential, but the vacuum
itself may be dispensed with. The simplest example is pro-
vided by starting with the conventional free neutral scalar
field ¢{z) in the standard Fock-Cook representation and
constructing the Wightman polynomial ¢(z) = : ¢*(z): which
can be shown to be a local field. [A. S. Wightman, Cours de la
Faculte des Sciences de I Université de Paris, 1957-8; p. 57 (un-
published)]. It may be seen to be irreducible over all odd
(even) particle states of the free field ¢(z). But in the set of all
states of ¢(x) with an odd number of quanta, there is no
invariant state! In spite of this, ¢(z) is a local field defined over
these states and undergoing local automorphisms implemented
by a unitary family.

3T, F. Jordan and E. C. G. Sudarshan, J. Math. Phys. 3,
587 (1962); D. Ruelle, Helv. Phys. Acta 35, 147 (1962); H. J.
Borchers, ‘“On Structure of the Algebra of Field Operators’

{Insti)tute for Advanced Study, Princeton, New Jersey, pre-
print).
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field operator, but discuss a class of field theories
in which this is not so.

The important question to be investigated is
whether every relativistic field theory admitting the
local automorphism has a unitary family U(a, A)
implementing it. There has recently been con-
siderable interest in the nonstandard representa-
tions in field theory and in the possibility of break-
down of formal symmetry properties of the theory
in the actual realization. It is then natural to ask
if the unitary family U(a, A) exists for the non-
standard representations of any theory. In the follow-
ing sections, we investigate this question in detail
for a free neutral scalar field: the result is somewhat
unexpected. Within the framework of an srreducible
representation of the operator algebra, only the
standard Fock-Cook representation admits such a
unitary family.* This result, obtained within the
axiomatic framework outlined, is most simply stated
as follows: ““Of all representations of the relativistic
(neutral, scalar) free field, only the standard repre-
sentation obtains a manifestly covariant local uni-
tary transformation.” The role of the irreducibilty
assumption is seen from the results of Shale and
Segal® discussed in detail in Sec. 5; that, if it is
relaxed, there exists a one-parameter infinity of
theories in which a unitary family U(a, A) imple-
menting the local automorphism exist, but the spec-
trum conditions are violated in that the Hamiltonian
is not positive definite (except for the Fock—Cook
representation).

II. AUTOMORPHISMS AND REPRESENTATIONS OF
THE FIELD RING

Let £ be the (one-particle) Hilbert space of square
integrable functions ¥(r) of the three-vector variable
r. Then a unitary representation of the (proper,
orthochronous) inhomogeneous Lorentz group is
furnished by the choice®

)0 = [ ofe, V)9) &

V)@ = —iVy@)
G = —ilt x V)¢

(2.1)

OO = § [ ¢+ ot ) .

for the ten generators h, p, j, k of the group. We
have used the kernel w(r, ') defined by

* This statement refers only to the free field. The essential
point is not the existence of the vacuum (compare reference 2),
but the existence of the energy operator; see Sec. 3.

8 I. E. Segal, Illinois J. Math. 6, 500 (1962).

¢ See, for example, L. L. Foldy, Phys. Rev. 102, 568 (1956).
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olt,¥) = @0 [ e lig-( — )@ + ) .

This representation is irreducible’ and corresponds
to a particle of spin zero and mass m. We shall
denote the finite unitary transformation corre-
sponding to a Lorentz transformation (a, A) ob-
tained from these ten generators by the unitary
operator R(a, A) in the space £.

Let u.(r) be an orthonormal basis in £ so that

f uX@Ous®) d'r = 4.

We define the kernel €(r, ') by
e, r) = 2742

X f exp [ig-(r — r))(@* + m") " &’

2.2

Let a. be a sequence of (unbounded) operators and
let a, be their adjoints which satisfy the commuta-
tion relations

2.3
We shall call the ring generated by the operators

the field ring. Then the (relativistic, neutral scalar)
field operator is given by the construction®

[aav a;] = 61:.8; [aav aﬂ] = 0.

o, ) = 3 f efr, ') exp (iht)

X [aau. () + aut@)) dr. (24

The field operator ¢(z) = ¢(x, x,) then satisfies the
commutation relation

[6(@), ¢(2")] = iA(x — 2)
= —ien™ [ @ + m) e ey)
X sin {go(q* + m")}} d’q.
Under the transformation
ua(t) — R(a, Au,(r),
the field operator ¢(zx) transforms locally:
¢(z) — ¢(Az + a).

7 This representation is not equivalent to the reducible
representation obtained from a (local) relativistic wave equa-
tion with a (manifestly) covariant amplitude. To see this
explicitly, we note that a local relativistic wave equation is
invariant not only under the real Lorentz transformations,
but also under complex Lorentz transformations. It is, in
particular, invariant under the antichronous proper trans-
formation r — —r, ¢t > —{. But under this operation, fre-
quencies change sign; hence the ‘‘energy’’ must also change
sign for the one-particle amplitude. This 18 of course true in the
familiar spin-0, spin-1/2 and spin-1 covariant wave equations.

8 For a detailed discussion see, for example, S. S. Schweber,
An Introduction to Relativistic Quantum Field Theory (Row,
Peterson and Company, Evanston, Illinois, 1961) Sec. 7.
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By virtue of the invariance of the commutation rela-
tions under the change z — Az + @, 2’ — Az’ + a,
it follows that the local transformation ¢(xr) —
¢(Az + a) is an automorphism.

We may now consider this automorphism of the
field operator as being generated by a linear auto-
morphism of the field ring [rather than by a linear
transformation on the u,(r)]. For this purpose let
us write

Rusla, A) = f wOR@, MA@ &r.  (2.5)
Then the local transformation of the field operators
is equivalent to the linear automorphism

Qe — 2 R o405 Uo — Z Ripa’s
I 8

of the field ring. The question of the representation
of the field operator is the same as that of the repre-
sentation of the field ring.

The interesting question to be discussed now is
whether these automorphisms of the field ring can
be generated as inner automorphisms, i.e., whether
there exists an operator family U(a, A) such that

U(a‘, A>aaU11(a': A) = ;Raﬁ(ay A)aﬂ' (28)

2.6)

Since Hermiticity relations are preserved by these
automorphisms, if the representation of the field
ring is irreducible, the U(a, A) would be a unitary
family (apart from an unessential scalar). Even in
the more general reduction into factors,’ if U(a, A)
belongs to the field ring, the same property holds.

III. LORENTZ COVARIANCE OF IRREDUCIBLE
REPRESENTATIONS OF THE FIELD RING

In this section we wish to investigate the auto-
morphism of the field operators more closely. We
shall be particularly interested in the necessary and
sufficient conditions under which there may exist
an inner automorphism of the operator algebra for
every Lorentz transformation (@, A). Let ¢ be any
one {or linear combination) of the ten generators
h, p, i, k. Define

Cus = f wrOeus® &'r @3.1)
in terms of the basic set of one-particle wavefunc-
tions u.(r). Let us also assume that we have an ir-
reducible representation (or, more generally, a
factor representation) of the field ring.

We shall now explicitly assume that U(a, A) belong

® Compare T. F. Jordan and E. C. G. Sudarshan, refer-
ence 3.
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to this ring.’ Let U(r) be any one-parameter family
belonging to U(a, A). Since U(r) constitute a one-
parameter unitary family on the Hilbert space 3C
on which the field operators are represented, by
Stone’s theorem,'® there exists a Hermitian generator
E for this family in 3 which satisfies the relations

Ur) = 1+ iE + 0(s%),
U(T)aﬁU"l(T) = Qg + iT[E, IIB] + O(Tz).

If U(r) is the unitary family corresponding to the
generator e in the one-particle Hilbert space &£, it
follows then that

Qe = O Rup(Das = au + i 2 eapts + O(%).
B 8

We have, on comparing the two transformations to
first order in 7,

[E’, aa] = ; €4p03.
Consider the operator
F = Zﬂeaﬂa:aﬁ; [Fy aa] = ;eaﬂa’ﬂy

if it exists. Then it follows that Gf F exists),
[E -~ F * aa} = Oy

so that in every irreducible (or factor) realization of
the oscillator ring, # — F must be a scalar, which we
denote by C. Hence if the operator F exists, the
generator E has the form

E = Zseaﬂ(a:aﬂ + euﬂ)r

3.2)

(3.3)

where €,z may be chosen arbitrarily except insofar
as to require

C= }_; eapeaﬁ.

On the other hand, we may show that if this struc-
ture (3.3) for E does not exist, there can be no
operator associated with the oscillator ring which
satisfies (3.2). To see this, let us consider the index
« to be restricted to take on a finite set of values.
Then the corresponding condition (3.2) states that

[E’raa]z Bzeaﬁaﬁ; ae {alv ;aN}'
The right-hand side exists by definition of the auto-
morphism. This is satisfied only if

E=3 aZ(Zﬁ €astls) + &,

10 M. H. Stone, Ann. Math. 33, 643 (1932); J. von Neu-
mann, Ann. Math. 33, 567 (1932); F. Riesz and B. Sz-Nagy,
“Funetional Analysis,”” translated from French by L. F.
Boron, (Frederick Ungar Publishing Company, New York,
1955), p. 383.

3.4
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where
(§,a.] =0

e., & is associated with the oscillator ring a.,, a;
where y does not assume any of the N values
ay, * -+ , ay. Since the subset ay, - - - , ay is arbitrary,
this can be true if and only if E has the form (3.4).
Hence we have proved that the necessary and suffi-
cient condition for the existence of the operator
E associated with the field ring is that, for a suitable
set of constants @.s, there exists a nontrivial opera-
tor E of the form (3.3).

Let now E, E’ be the operators corresponding to
the one-particle operators e, ¢’ belonging to some
group of continuous automorphisms. This implies
that E, E’ have the structures

E = Zﬂ eaﬁ(a:aﬁ + emﬂ)y

E = ) eislatas + €Ly,
a,f

with suitable constants C,g,

[E,E'] = ZE, Eﬂ Caslrs [ata, at.ap]
a8 a’ B’

= 3 [e, ¢'lasaias.
a.B

It is important to note that on the right-hand side
of (3.5) there are no constant terms. Hence the cor-
respondence between e and F expressed by (3.5)
may now be further restricted by stating that if
= [¢’, €'’], then €, = 0 in the expression (3.5)

for E. Hence for such E we have

+
E = Zﬁeaﬁa.,a,,.
a,

For the case of the Lorentz group, the ten gen-
erators h, p, j, k have this property; it follows that
for any of these operators, the corresponding gen-
erator associated with the oscillator ring is given
by expressions of the form (3.6). Hence the necessary
and sufficient conditions for the Lorentz invariance
of the theory, i.e., for the existence of a unitary
family U(a, A) associated with the oscillator ring,
is that the ten quantities H, P, J, K defined by the
equations

C.s. Then we have

(3.9

(3.6)

H = Ehaﬁa:aﬂ,
«,8

P = > poaias,
a,B

J= Zﬂiaga';aﬁ,

K = X k.ala, 3.7
a8

all exist.
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We now observe that only in the standard repre-
sentation of the (finite-mass m, spin-0) field can the
Hamiltonian exist, since

H> > mégaiap=m 2 aia.; (3.8)
P

but the right-hand side is infinite (i.e. does not
exist) for any representation except the standard
ne."* It thus follows that, in the case of the rela-
tivistic (finite-mass, spin-0) field, none except the
standard (Fock) representation is Lorentz-covariant.
With unessential technical modifications, the proof
can be adapted to any finite-mass free field.

IV. SHALE-SEGAL STATES AND REDUCIBLE
COVARIANT REPRESENTATIONS

The Wightman formulation of the free field is
well known. It suffices here to say that in this
formulation the existence of the ten generators of
the Lorentz group and the existence of an invariant
state (vacuum) are postulated. The analysis in the
previous sections asserts that the nonstandard repre-
sentations of the free field do not fall within the
Wightman framework.

The relevant point here is that, by virtue of a
familiar construction,’*"** if we can define a linear
functional over the field ring which is left invariant
under the automorphism of the oscillator ring, the
theory furnishes a unitary representation of the
group of automorphisms. We outline the proof of
this assertion.

Let @ be a linear functional over the oscillator
ring which is invariant under the Lorentz auto-
morphisms A — Q(4), and the collection of linear
functionals Q; defined by A — Qz(4) = Q(BA),
for any operators A, B. Then we can define a
Hilbert space with a standard state « and operators
Oz associated with the elements B of the algebra
defined by

Q> w; B — 05;

Qp — wg,
with the representation
Opw4 = wpy

11 For readable accounts, see A. S. Wightman and S. S.
Schweber, Phys. Rev. 98, 812 (1955) R. Haag, Lectures on
Theoretzcal Physics edited byW E. Bnttm, B. W. Downs and
% L (I)ﬁns (Interscience Publishers, Inc., New York, 1961),

(6}

12 A, 8. Wightman, Phys. Rev. 101, 860 (1956).

131, E. Segal, Bull. Am. Math. Soc. 53, 73 (1947); 1
Gelfand and M. Naimark, Mat. Sbornik 54, 197 (1943) (ln
Russian); M. A. Naimark, 'Normed Rings, translated by L. F.
Boron, (P. Noordhoff Ltd Groningen, The Netherlands,
1959). See also R. Haag and B. Schroer, J. Math. Phys. 3,
248 (1962).
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for the operators 5. The scalar product is defined as
(way wA) = Q(B+A).

Let us now consider the automorphism of the oscil-
lator ring associated with R(a, A). Let 4 — A4’,
ete. under this automorphism. Then ws — wy. ete.;
but the scalar product becomes

(@p, wa) = (wpr, war) = YB'™A")
= Q(B+A) = (wg, @4),

so that there exists the true undtary family U(a, A)
in the Hilbert space which yields

Ula, Nwsy = wy-.

It satisfies, in particular, the property of leaving the
standard state invariant:

Ula, Aw = w.

The representation is a true representation, and by
Stone’s theorem'® there exists generators for every
one-parameter family. In particular, the ten gene-
rators of the Lorentz group all exist. However, there
s no assurance that U(a, A) belongs to the oscillator
ring. Nor is it guaranteed that the oscillator ring
has an irreducible (a factor) representation. But it
is true that the ‘“vacuum state” o is cyeclic with
respect to the oscillator ring.

If Ua, A) did belong to the oscillator ring, and
if the vacuum is cyclic, then all irreducible (factor)
representations into which the given representation
may be decomposed have an invariant vacuum state,
and the unitary family U(a, A) simultaneously de-
composes.” Then, by virtue of the results above, it
would follow that all the irreducible (factor) repre-
sentations must be the standard (Fock) representa-
tion of the oscillator ring. .

Two remarkable results concerning linear func-
tionals invariant under automorphisms have been
presented by Segal’®; we state the results here without
proof (and suitably paraphrased):

Theorem (Shale): There exists an infinite one-
parameter family of invariant linear functionals
on the oscillator ring and associated inequivalent
representations of the oscillator ring.

Theorem (Segal): Any universally invariant linear
functional is a convex integral of these fundamental
linear functionals. In every one of these inequi-
valent representations, except the standard Fock
representation, the generator, associated with a one-
parameter automorphism corresponding to a posi-
tive-definite one-particle generator, has a partially
negative spectrum. In particular, the Hamiltonian
is not positive definite.
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In the Shale theorem, the universal invariance
refers to an arbitrary linear automorphism corre-
sponding to an arbitrary unitary transformation
in the space of one-particle wavefunctions. If we
restrict ourselves to the linear automorphisms cor-
responding to the Lorentz group, it may be neces-
sary to weaken the theorem by omitting the second
part of the theorem. Shale fundamental linear func-
tionals are defined as follows: Let 4 be any operator
associated with a finite subset of oscillator variables
' Gin}

. +
{aﬁ,, Tty Qg Gy, t

Let D(n; By, -+ , By) be the projection operator
associated with the operator D Y., agas corre-
sponding to the eigenvalue n. Then consider the
linear functional that assigns the numerical value

] BN)}:
(4.1)

where tr corresponds to the trace relative to the
finite subset of oscillators and 0 < C < 1. The
universal invariance of the linear functional is appar-
ent since the projection operator D(n; 8y, <-- , Bw),
as well as the operation of relative trace, are in-
variant under arbitrary linear automorphisms of the
finite set of oscillator variables, corresponding to a
finite-dimensional unitary transformation.

Observing that the Shale linear functionals are
invariant under the Lorentz automorphisms, making
use of the linear functional construction, we have
a unitary representation of the Lorentz group on
a Hilbert space and an invariant state. If the
unitary family U(a, A) belonged to the oscillator
ring, the known result on the reduction of repre-
sentations of fields with an invariant vacuum state
then assert that the representation is reducible,’
and further, that in each of the reduced representa-
tions there exists an invariant state.” But since
EC’(I) = 17

Eo(> ala,) = lim (1 — C)"

Ec(4)=01-0% iC"tr {AD@; B, -

X ioon'n'tr {D(n;ﬂh s, B}
— lim (1 — ¢)" Z"nC'"(N-I—n—l)!_ o, (4.2)

N — w7

N-x n=0

it follows that not all of them can be standard
representations. Hence the unitary family U(a, A)
does not belong to the oscillator ring.

These results point out that the Shale states
furnish a new class of representations of an operator
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algebra by linear operators, and its automorphisms
by unitary operators, in terms of direct integrals
of representations of the algebra which do not in
general, furnish a representation of the auto-
morphisms. The unitary operators representing the
automorphisms do not leave the component repre-
sentations of the operator algebra invariant, but
in fact intertwine these component representations.
We are then led to conjecture that the Shale states
are not pure states even though they are extremal
elements of the convex set of universally invariant
states. To verify this conjecture, let us restrict our-
selves to a finite subset of oscillator variables; then
the density matrix representing the state is

v = (1 — C)N Z; C"D(n; By, -+ , B, 4.3)
so that tr {px} = 1, but
tr {ox} = (1 = ) 2 C*™ tr {D(n; B, -+ , Bx))

— (1 _ C)2N(1 — C2)—N
= [0 = C)/A+ O # 1= tr {py},
for any value of N.

V. DISCUSSION

We thus find that the various aspects of relativistic
invariance of quantized field theories imply different
things, and to a large extent, these requirements are
independent. We may have a local automorphism
¢(z) — ¢(Az + a) but no unitary operator U(a, A)
in a particular representation of the field operators;
it then means that it is meaningless to talk about an
energy-momentum operator and the spectral con-
ditions. This comes about since in an irreducible
representation of a set of operators, it is not auto-
matic that groups of (linear) automorphisms of the
operators get represented; in general such an auto-
morphism generates an inequivalent representation
of the operator algebra. Since automorphisms of a
Hamiltonian dynamical system are called canonical
transformations, we see that not all canonical trans-
formations are unitary transformations. It is curious
to observe that in the logical structure of dynamics,
the primitive dynamical attributes of energy, mo-
mentum, and angular momentum are associated
with automorphisms (canonical transformations) of
the dynamical variables, rather than directly with
functions of the dynamical variables themselves.

On the other hand, the existence of a unitary
family U(a, A) representing Lorentz transformations

E. C. G. SUDARSHAN

does not imply the local manifestly covariant trans-
formation:

o(x) — Ule, Np(x)U  (a, A) # ¢(Az + a).  (5.1)

Such a theory may be constructed as follows:
Choose the standard (Fock) representation of the
free field. Then we can explicitly construct the
projection operator to a two-particle state, follow-
ing a construction of von Neumann." We have

®(a, B) = 3a.a730(0)a.as. (5.2)
Here ®(0) is the vacuum state projection operator:

00 = [ en [ _as. [ ay.

a=l

X exp [(xa + 1.)/V 2a,]
X exp [(x. — )/ V2al],

which does not vanish by definition of the standard
representation. Let V(e Bi; a28:) be the Moller
matrix for a relativistic interacting two-particle
system. Such unitary Moller matrices exist.’* Now
construct the field operator:

Y@@ = {1 — Zﬁ ®len, Bi)}o(@) {1 —

@1,

(5.3

2 ®las, )

as,fa

+ 1 2 X VHabB; aba)®le, B)é()

a1, B @1,82

2 2 ViwB; aaBod(@)®(es, Bo).

a1.81 @2,82

+ 3 (5.4)
This field operator is unitarily equivalent to the
field operator ¢(x), since the transformation ¢(z) —
¥(r) is equivalent to the unitary transformation
in the Hilbert space of the field operator in which
the “two-particle” states undergo the unitary
transformation by the Méller matrix V{a,8:; az02).
The resulting theory leads to nontrivial scattering
in the two-particle channel, and only in that channel;
it is hence highly artificial. On the other hand, the
transformation of ¢¥(r) when ¢(z) transforms by
Ul(a, A), is by the family

U'(a, A) = Ua, A){1 — aZ;@(a, 8}

X > ¥

a1,81 @2,82 a1’.B1’ as’ ,Bs’

X ®lez, B)Ula, A)(ay, B) V(euBs; asbs).

V(aiB{; aiBs)
(5.5)

These transformations are nonlocal, but are never-

4 J, von Neumann, Math. Ann. 104, 570 (1931). See also
A. S. Wightman and 8. S. Schweber, reference 8.

1 T, F. Jordan, A. Macfarlane, and E. C. G. Sudarshan, “A
Hamiltonian Model of Lorentz Invariant Particle Inter-
actions,” (to be published).
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theless unitary, and are obtained by a unitary trans-
formation on the family U(a, A). Consequently, the
family U’(a, A) is a unitary representation of the
Lorentz transformations and is in accord with the
spectral conditions. However, since the transforma-
tions under Lorentz transformations are nonlocal,
the elegant analyticity properties of the Wightman
functions do not obtain for the ‘“‘interacting’ field.

We have already seen that the existence of local
unitary automorphisms of the field operator does
not imply the existence of a vacuum state (invariant
linear functional) even if the spectrum conditions
are satisfied. On the other hand, from the Segal
theorem, we see that a unitary family of local auto-
morphisms does not imply the spectrum conditions
even if a vacuum state (invariant linear functional)
exists.

The lack of Lorentz covariance of the nonstand-
ard representations of the free relativistic field im-
plies that the so-called ‘“thermodynamic limit” of
the free field (in which the particle density is finite
over all space) is not Lorentz-covariant.

Instead of the relativistic field and covariance
under the Lorentz group, we could consider other
dynamical systems and other groups of auto-
morphisms. One familiar example of this type is a
spin assembly with a ferromagnetic Hamiltonian,
i.e., an infinite number of localized “‘spins”’ (con-
stituting a spatial lattice and with mutual inter-
actions favoring parallel alignment of spins). There
then exist states of infinite spin (‘“‘ferromagnetic
states’”) with the resultant spin of the ferromagnet
oriented along an arbitrary axis in space (‘“‘along
the direction of the trace magnetic field”’). On the
other hand, since the (interacting) Hamiltonian of
the spin assembly is rotationally invariant, no direc-
tion is preferred over any other; it is usually stated
that the ground state must be infinitely degenerate
since every one of these states with the “infinite”
spin has the same energy. In the light of the results
stated before, it is clear that to refer to this phe-
nomenon as ‘‘degeneracy of the ground state” is
misleading sinee each one of these states of infinite
spin corresponds to a different representation; de-
generacy refers to states in the same irreducible
representation of the dynamical system. It also
follows that while there is a rotation automorphism
of the spin algebra (which leaves the ferromagnet
Hamiltonian unchanged), the “infinite spin” states
do not furnish a unitary representation of these
automorphisms. In other words the ‘‘ferromagnet”
is not rotation-covariant, and its angular momentum
is undefined. We can, however, construct the Shale—
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Segal representations for the spin assembly in which
ferromagnetic states are included; but in these
representations the spin assembly is not irreducibly
represented. In actual physical situations, one does
not consider infinite spin assemblies, and it is clear
that only a countable number of inequivalent repre-
sentations exist (corresponding to all values of total
spins up to a maximum finite spin, and these with
suitable multiplicities). However, the restriction of
the inequivalent ferromagnetic states to a finite
number of spins forms a convenient starting point
for a perturbation theory which may be useful below
the Curie temperature. It is perhaps important to
note that the existence of the various representa-
ttons ts purely kinematic (i.e., depending only on the
operator structure of the dynamical system), and
not on its dynamics (Hamiltonian); the dynamics
merely help “stabilize” the states and make them
occur in physically interesting applications.

It is tempting to believe that the considerations
outlined here apply to the structure of the representa-
tions of interacting fields. For the trivial nonfree
system of theories involving Wightman polynomials®
(since normal ordering is still defined!), these con-
siderations certainly apply. But no result of this
kind is known for any genuine interacting theories.
(Nor does one know if there are genuine interacting
field theories!). For the time being, the relevance
of these considerations to interacting fields must
remain a hope.

APPENDIX A. REPRESENTATIONS OF THE
FIELD RING

The question of the representation (see reference 9)
of the field operator ¢(z) is the same as the repre-
sentation of the ring a,, a;. The most familiar repre-
sentation of the field ring is the “Fock” representa-
tion furnished by all sequences of nonnegative inte-
gers {n;}, with >.o., n; < o considered as basis
vectors of a Hilbert space so that

((n}, (@) = IT s, n®).

i=1

The oscillator variables a., ai, have the representa-
tion

*{ni - 5!!:'} H

aa{ni} = Na
aufn;} = (o + Diin; + 8.},

so that the »; can be thought of as occupation
numbers, and a,, e, as annihilation and creation
operators. We shall refer to this representation as
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the standard representation (or the Fock repre-
sentation).

Inequivalent representations of indescribable mul-
tiplicity exist. An uncountable number of such
representations is obtained by the above construc-
tion, but by relaxing the requirement that > =, 7,
be finite. We note that if {n{"’} and {n{®’} belong to
the same representation, then Y7, [n{’ —n{®| < .
We may define equivalence of two sequences of non-
negative integers by requiring that >, [n{" — n?|
be finite; this is then reflexive, symmetric, and
transitive, and consequently defines uncountably
many equivalence classes of sequences of nonnega-
tive integers. Each sequence defines a representation
of the oscillator ring, and there are uncountably
many inequivalent representations. All these repre-
sentations are called ‘“‘discrete.”

A multitude of inequivalent representations of the
oscillator ring can be obtained as follows: Consider
the transformation

a0 = b = 2 (Ve Bag + Wie, Baj),
with
; {Vie, BV, B)
= W, OW*', B} = 8ca,an-
Then b,, b}, are also oscillator variables:
[ba) B8] = 8ag;  [ba, bg] = 0.

We can now construct the (uncountably many,
inequivalent) discrete representations with respect
to the oscillator variables. For almost all transfor-
mations V, W, these representations are inequi-
valent among themselves and in relation to the dis-
crete representations with respect to the primitive
variables. The simplest class of such representations
is obtained by considering an infinite set {»;} of
infinite subsets of the indices j, so that r and &
run over an infinite set of values, and taking

Vv, v)) = 8,,8.: cosh 6(),
W(V;, V;) = 6,,61‘; Slnh 0(7').

There are uncountably many such choices of param-
eters, and the discrete states with respect to these
oscillator variables are inequivalent.

A third class of representations is discussed in
connection with the results of Segal and Shale in
Sec. 5.

APPENDIX B. REPRESENTATION OF GUAGE
TRANSFORMATIONS

There are cases in which a one-parameter group

E. C. G. SUDARSHAN

of automorphisms admit a unitary representation
for one of the nonstandard representations of the
oscillator ring. Consider the case of a charged (scalar)
field ¥(z) and the one-parameter group of gauge
transformations of the first kind:

(@) — e Y(a).

This is an automorphism since it leaves the com-
mutation relations

[¥(@), ¥*@)] = Az — o)

invariant. Since we have a charged field, ¥(z) is
no longer Hermitian, and the expansion in terms of
one-particle function introduces two sets of oscil-
lators a., al; b., b:. The automorphism on the
oscillator ring is

b, — ¢ *b.,

+ ‘Az +
by — b,

ih
A, — € a,,

~iA_+

a; — ¢ “ag,

For « running over a finite index set, this auto-
morphism is generated by the unitary operator

V) = exp {ix 2 (bib, — alal)}.
If the (unbounded) hermitian operator

Q = Zw: (a:aa - b:ba)

a=1

exists, then the unitary operator
UQN) = exp (—u\Q)

also exists, and generates the automorphism. In
other words, we have a realization of the gauge
transformations of the first kind provided @ defined
by (3.10) exists. However this is not a mecessary
condition since it is sufficient if the operator

Q’ = Z (a:aa - b:ba + ea)
a=1

exists for suitable choice of the constants €,. Con-
sequently, every one of the discrete representations
of the oscillator ring is gauge-covariant. The question
of the gauge covariance of the continuous repre-
sentations is more complicated; in general they are
not gauge-covariant. It is not known whether there
are any gauge-covariant continuous representations
of the oscillator ring.
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Tt has been shown by Wolf that, if a field amplitude obeys the wave equation, then a derived field
quantity (the cross correlation or mutual coherence function), also obeys the wave equation. This
result helps clarify the subject of partially coherent light; for example, a Huygens’ principle for the
propagation of intensity is a consequence. A generalization is presented: For that class of linear partial
differential equations (p.d.e.’s) in which at least one independent variable, say ¢, does not appear in
the coefficients, one can construct from a solution f(P, ¢), (P representing collectively the other in-
dependent variables) a generalized “cross-correlation’’ function F(P, ¢; Py, h, P, t; -« -) satisfying
the same p.d.e. a8 f(P, t); F is an integral over s of f(P, t + s) g (s, P, &, P, f2 + - +), where (Py, i, Py,
& ---) are values of (P, {); for particular choices of the highly arbitrary g, F can be, for example, (a)
the usual cross-correlation function, used by Wolf, (b) a higher-order correlation function, (¢) the
Hilbert transform of f(P, t), and (d) derivatives of f(P, t). For linear p.d.e.’s in which two or more
independent variables have the above property, higher-dimensional or vector versions of F are obtain-
able. The existence of this (two-fold) generalization of Wolf’s result suggests the possibility of other
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physical applications.

1. INTRODUCTION

N recent years there has been considerable in-
terest in the theory of partial coherence of light
as evidenced by a large number of papers on the
subject. One of the prominent contributions has
been some work by Wolf' concerning the propagation
of the coherence function or the correlation function
in a wave field. In particular, Wolf discovered that
in a field governed by a wave equation (such as
that of an optical disturbance), wherein the ampli-
tude propagates in space and time, the correlation
function of this disturbance also will obey the wave
equation and propagates in a similar manner. Wolf
made use of this result in various problems dealing
with partially coherent light; in particular, he showed
that a kind of Huygens’ principle for the propaga-
tion of intensity is a consequence. In the present
paper it is pointed out that Wolf’s result is a special
case of a far more general result.

First, considering the wave equation, many quanti-
ties other than the correlation function, which may
be derived from a given solution, are also solutions
of the original equation. For example, higher-order
correlation functions also have this property. Second,
this property may be extended to many equations
other than the wave equation. It is hoped that by
presenting this generalization of the previous result
we may stimulate other applications in addition
to those already made.

* Presented at meeting of the American Physical Society
at Seattle, Washing}%on, August 1962.

1 M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Inc., New York, 1959), Chap. 10. E. Wolf, Proc. Roy.
Soc., London, A230, 246 (1955).

2. DEVELOPMENT

The previous work' considers the wave equation
V= (1/)(8%f/8t), (n

and considers a solution f(P, {) where P represents,
collectively, the spatial variables z, y, 2. Forming
the cross-correlation function or coherence function

(P, 4, P, ) = av f(Py, &, + t)f*(Pz, L+ 9, )

it is found that this also obeys Eq. (1), where
(Py, t,) or (Ps, ;) are taken to be the independent
variables; i.e., (2) obeys the pair of equations

Vil = (1/)@T/e8)  (i=1,2), ()

where V2 is the Laplacian operator with respect
to the coordinates P,. In Eq. (2), av represents
average with respect to ¢; (*) represents complex
conjugate. As mentioned above, this result turns
out to be useful; for example, Wolf combines it with
the Kirchhoff-Helmholtz integral formula to derive
a kind of Huygens’ principle for the propagation of
intensity in a wave field.
Now consider that class of operator equations

Lf =0, @)

where the operator L acts on f, a function of inde-
pendent variables (z, ¥, 2, w --+); we require the
following two properties: (1) if f(z, v, 2, w ---) is
8 solution, then we can change at least one of the in-
dependent variables, say z by a constant ¢ and stiil
achieve a solution, in other words, f(z,y,2 + ¢, w - - -)
is also a solution; (2) Equation (4) is linear. If
Eq. (4) has the above two properties, which may
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be briefly called (1) the shifting property, and (2)
linearity, then we may achieve a large generaliza-
tion of Wolf’s result. These two conditions are met
by the class of linear partial differential equations
for which at least one of the independent variables
does not appear in the coefficients. A large number
of the equations of physics are of this type including,
of course, the wave equation (1).

Assume that linearity holds and that the shifting
property is true with respect to the independent
variable denoted ¢ (not necessarily time), and denote,
collectively, the other independent variables by P;
then it is seen that if f(P, ) is a solution of Eq. (4)
then there is a generalized solution

F(P, t,Pl, tl,Pz, tg )
= [as i, 1+ 9g(s; oy b, Pay e -). (9

By interpreting the highly arbitrary g and the limits
of integration in various ways, we obtain, formally,
various solutions F. We say “formally” since, of
course, some of the indicated operations may, under
certain conditions, produce divergent or mathe-
matically “nonexistent’” functions. The following
are some examples of (5):
(a) If

9(8) = (—d/ds)é(s), (6)

where 8(s) is the Dirac delta function, we obtain as
a solution the derivative

F = (3/00f(P, 1). @

(b) If g is interpreted as —1/=s, and if the inte-
gration is taken between — « and « in a principal-
value sense, then we have

I

_1 o (@)
- rf_mdt i—v0 ®
i.e., F(P, t) is now the Hilbert transform’ of f(P, ¢),
with respect to the variable ¢; since the Hilbert
transform is defined for real functions, we have here
taken f(P, t) as real.
(e} If we take g as

g = const f*(P,, &, + 3), ©)
we have
t J. Dugundji, IRE Trans. Info. Theory 4, 53 (1958);

E. C. Titchmarsh, Introduction to the Theory of Fourier Inte-
grals (Claremont Press, Oxford, England, 1948), Chap. 5.
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FP,t, Py, t,)
= constf ds (P, t + )f*(Py1, t, + ). (10)

Comparing Eq. (10) with Eq. (2), we see that this
is essentially the cross-correlation function between
the solutions for two different points, where the
integral is taken in the “av’ sense; that is, as the
limit of the integral, (‘“const’ being the reciprocal
of the range in s, the range being extended to
infinity).

It is to be noted that in Eq. (2) Wolf takes
f(P, t) as complex, with imaginary part the Hilbert
transform of the real part. In (b) above, we have
shown that the Hilbert transform of a solution
of Eq. (1) or of Eq. (4) is a solution, so this form of
f(P, t) is encompassed in our treatment.

(d) By taking

g = const f(Py, t; + §)f(Ps, b, + 8)f(Ps, ts +8) -+,

(11)
we obtain
FP, t; Py, t,, Py, 5 --)
= constf ds f(P, t+8)f(Py, i +9)f(Ps, t+8) -+ .
(12)

Expression (12) may be regarded as a generalized
higher-order correlation function, so Eq. (5) thus
includes this sort of generalization. If the shifting
property holds with respect to more than one of
the independent variables, higher-dimensional or
vector versions of the generalized solution F are
available.

3. CONCLUDING REMARKS

For that class of linear-operator equations (4)
obeying the “shifting property’ (also referred to as
invariance under the translation group®), the “gen-
eralized cross-correlation function” F, Eq. (5), may
be formally constructed from a specific solution; F
is then also a solution.

Wolf’s remark that the cross-correlation function
in a wave field obeys the wave equation (1) is
equivalent to a special case of our result. Perhaps
other “physical”’ consequences of this generalized
result can be added to those already found' for the
case of partially coherent light. There may be cases

3 E. Goursat, E. R. Hedrick, and O. Dunkel, A Course in
Mathemaiical Analysis (Ginn and Company, New York,
1917) Vol. II, Part I1, pp. 86-99.
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in which boundary conditions can be conveniently
set up in terms of some form of F, instead of a more
conventional “amplitude.” Furthermore, analogues
of the Kirchhoffi-Helmholtz integral formula may
be available in other areas. It may be of some
interest to note that, by the use of this formula,
one can set up a generalized Huygens’ principle for
the propagation of any nth power of the amplitude
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in a light field (n an interger) or of the nth moment
of the amplitude.
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Numerical results of Monte-Carlo calculations of spacing and eigenvalue distributions for the
invariant and independent Gaussian orthogonal ensemble of Hamiltonian matrices are presented.
Many of the histograms should be useful for comparison with experimental data. A table of the first
few moments of each distribution is given. For the spacing distributions, such moments are equivalent
to spacing correlation coefficients, and hence these are also made available indirectly.

I. INTRODUCTION

'HE use of random matrix models to explain
the observed statistical fluctuations in the
energy level spacings, energy-level widths, and ex-
pectation values of complex spectra is now a well-
established point of view.'”'> However, the diffi-
culties of extracting analytical results from such
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Emd I\)I Rosenzweig, Ann. Acad. Sci. Fennicae AVI, No. 44

1960).
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models to compare to experimental data are con-
siderable, and this task has so far been accomplished
only in special cases and with a tremendous display of
analytical virtuosity.’™® It is the purpose of this
article to present a complete set of numerical results
for one mode! to indicate what might in the future
be obtained analytically and to provide much needed
theoretical results to compare to experimental data.
(We do not go into the data analysis in this paper.)

II. THEORETICAL MODEL

The model used in this paper is the invariant,
independent Gaussian orthogonal ensemble in 10
dimensions.' Thus the real symmetric Hamiltonian
matrix (10 X 10) is distributed according to the form

P(H) = C exp (—Tr H*/45%). (1)

where C' is a normalization constant and ¢ is the
root-mean-square dispersion of the off-diagonal
matrix elements. The parameter o is a scale factor,
and is related to the mean distance D between
levels by the approximate connection (valid for
large N)

D = zo/N?¥, @)

where in this paper we are concerned with N = 10.
The details of the numerical computations are
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described elsewhere.”® It is sufficient to note that a
straightforward Monte-Carlo calculation was per-
formed in which 10 000 random 10 X 10 matrices
were generated according to the distribution (1)
and then diagonalized, and the resulting spectra
were sorted to yield the results which are plotted
in the graphs and tabulated in Table I of this paper.
The eigenvector components were, of course, ob-
tained also, but since the eigenvector component
distribution is well understood in this (invariant)
case (for example, the marginal distribution of a
single component is that of a component of a ran-
domly oriented unit vector in 10 dimensions—see
reference 1), we do not discuss the eigenvector com-
ponents further since they feed naturally into the
distributions of widths (transition probabilities) and
expectation values which are discussed elsewhere.”"*

It has been shown by Mehta® that an intimate
connection exists between the circular orthogonal
and circular symplectic ensembles. The connection
is such that the spacing distributions in the circular
symplectic ensembles are identical with alternate
spacing distributions in the circular orthogonal en-
semble, i.e., the nearest-neighbor spacing distribu-
tion in the circular symplectic ensemble is the next-
nearest-neighbor spacing distribution in the circular
orthogonal ensemble with the mean nearest-neighbor
spacing of the circular orthogonal ensemble doubled,
etc.

It is suspected that a similar connection exists,
at least in the infinite-dimensional limit, between the

TasLE 1. Tabulation of Moments.

Moment 1 2 3 4
Spacings Neighbor
0 1.001 1.316 2.105 3.925
1 2.001 4.484 11.09 29.93
2 3.001 9.590 32.48 116.1
3 4.001 16.67 72.21 324.4
4 5.001 25.73 136.1 738.7
5 6.001 36.78 230.1 1468.
6 7.001 49.84 360.6 2651.
7 8.001 64.90 533.7 4448,
8 9.001 82.02 756.7 7065.
Eigenvalues All —.001347 .4327 —.0004436 .2515
1,10 .8404 L7257 .6432 .5845
2,9 .6047 .3795 .2463 .1648
3,8 .4156 .1845 . 08655 .04257
4,7 2455 .07075 .02264 .007850
56 1066 .01701 .003376 .0007729

18 K. Fuchel, Rita J. Greibach, and C. E. Porter, “Random
Matrix Diagonalization—~A Computer Program,” Brook-
haven National Laboratory Report BNL 760 (T-282), Sep-
tember 1962 (unpublished).

4 T J. Krieger and C. E. Porter, J. Math. Phys. (to be
published).
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Gaussian symplectic and the Gaussian orthogonal
ensembles, but this has not yet been proven. If
this connection does exist, then our computations
for the Gaussian orthogonal ensemble may apply to
the Gaussian symplectic ensemble as well.

II. NUMERICAL RESULTS

The numerical results are shown in Figs. 1-6.
In Figs. 1-3 are plotted the histograms for the nine
possible spacing distributions P* for 10 X 10
matrices. The superscript k is the number of levels
“in between” and ranges from zero to eight. The
first four moments of these distributions are given
in Table I.

It is perhaps worth noting that an “edge” effect
was arbitrarily normalized out of the numerical
spacing distribution computations. To understand
what this means, consider a 4 X 4 matrix. In the
resulting spectrum there are four levels, three
nearest-neighbor spacings, two next-nearest-neigh-
bor spacings, and one next-next-nearest-neighbor
spacing for each matrix diagonalized. It is obvious
that if the mean nearest-neighbor spacing is D, then
the mean next-next-nearest-neighbor spacing is 3D.
However, because of the finite size of 8 4 X 4 matrix,
it is mot true that the mean next-nearest-neighbor
spacing is 2D since the two next-nearest-neighbor
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spacings do not weight equally the three nearest-
neighbor spacings. In the computations, a mean
spacing was computed for each P* and was found to
deviate slightly from (k¥ + 1)D. This deviation was
compensated for by scaling D for each P* so that
the plots in Figs. 1-3 are arranged such that the
mean value of z is exactly equal to £ + 1. This can
be seen from Table I; of course, the higher moments
are based on the same scale.
Figure 4 shows the sum of all the F*, i.e.,

N-2
P = Z Pk.
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For a Poisson distribution which is appropriate for
levels of many different symmetries,

Pi(z) = (2"/kY) exp (—a), )

so that in this case
Poisson Hw L ®)
The repulsion effect for small z is clearly evident

in the figure.

Fig. 5 shows the semicircle law of Wigner'® for
the single eigenvalue distribution. The semicircle
law holds asymptotically for large N and has the
form

P(E/20NY = (2/m)[1 — E*/4°N1}. 6)

The asymptotic law is clearly already very good for
ten dimensions. Analytical expressions for the single
eigenvalue distribution for all dimensions in the
Gaussian ensemble have been obtained by Mehta
and Gaudin.® We show the Monte-Carlo results here
mainly to indicate the correctness of the computer
program.

Because of the plus—minus symmetry of the input
matrix element distributions, the first and tenth
(in numerical order) eigenvalues are statistically
equivalent except for sign. Thus, to increase the
counting rate, the sign of the first eigenvalue was
changed and the result grouped with the tenth
eigenvalue. (We could have likewise plotted only
half of the semicircle in Fig. 5 since it is symmetrical
about zero.) Similarly the other eigenvalues can be
paired off. The resulting histograms are shown in

T T T T T

1.0 10x10

0.8
0.6

k.4
Zp
2 0.4

I T O O S O

0.2

TIrrTTTrrrr T

) | 1 I 1

&
3
o
o
o
o
3]
)
&

E/20/N

Fi1e. 5. Histogram plot of the semicircle law. Note that the
ordinate is (47)P and the abscissa is E/20¢N#,

1 E. P. Wigner, “Statistical Properties of Real Symmetric
Matrices with Many Dimensions” (invited address) Proc.
Canadian Math. Congr. (1957), p. 174.
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Fig. 6. (Moments of the distributions are given in
Table I.) Thus we can see how the semicircle breaks
down into its component parts. Another way of
saying this is that the separate eigenvalue distri-
butions merge smoothly to form the semicircle, i.e.,
there is no energy gap in the spectrum. The absence
of an energy gap is related to the symmetry of the
matrix element distribution.

It is planned to report in the future computations
which show that breaking the symmetry of the
matrix element distribution leads to an energy gap
in the spectrum, with a characteristic departure
from the semicircle law.
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simple condition on 4 and B,

1. INTRODUCTION

HE purpose of this paper is to write down a

simple representation of the Schrédinger multi-
channel 8 matrix which will automatically satisfy
all the unitarity conditions, the reality condition,
and the analytic properties of S as a function of the
two complex variables ! and E. The discussion is
mainly kinematical in the sense that it involves
only the general characteristics in the formulation
of the Schrodinger scattering problem, and does not
depend on the details of the interaction. Most of
the results are thus expected to hold even in the
case of relativistic scattering of particles. For defi-

niteness, however, we may restrict ourselves to the
class of potentials studied, for example, by Mandel-
stam.' It was shown'’ that the single-channel S
matrix is a meromorphic function of the variables
land k in the domain formed by the product of the
whole finite [ plane, with the % plane cut along the
imaginary axis from k = %iu to ¢ «, and again

! 5. Mandelstam, Ann. Phys. (NY), 19, 254, (1962). The po-
tentials studied by Mandelstam are very restrictive. For the
more general class studied by Bottino et al., all the discussion
in this paper is unchanged except for the domain of analyticity
on the ! plane, namely the right half-l plane (Re | > —1)
instead of the whole finite [ plane.

*A. Bottino, A. M. Longoni, and T. Regge, Nuovo
Cimento 23, 954 (1962).
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saying this is that the separate eigenvalue distri-
butions merge smoothly to form the semicircle, i.e.,
there is no energy gap in the spectrum. The absence
of an energy gap is related to the symmetry of the
matrix element distribution.

It is planned to report in the future computations
which show that breaking the symmetry of the
matrix element distribution leads to an energy gap
in the spectrum, with a characteristic departure
from the semicircle law.
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channel 8 matrix which will automatically satisfy
all the unitarity conditions, the reality condition,
and the analytic properties of S as a function of the
two complex variables ! and E. The discussion is
mainly kinematical in the sense that it involves
only the general characteristics in the formulation
of the Schrodinger scattering problem, and does not
depend on the details of the interaction. Most of
the results are thus expected to hold even in the
case of relativistic scattering of particles. For defi-

niteness, however, we may restrict ourselves to the
class of potentials studied, for example, by Mandel-
stam.' It was shown'’ that the single-channel S
matrix is a meromorphic function of the variables
land k in the domain formed by the product of the
whole finite [ plane, with the % plane cut along the
imaginary axis from k = %iu to ¢ «, and again

! 5. Mandelstam, Ann. Phys. (NY), 19, 254, (1962). The po-
tentials studied by Mandelstam are very restrictive. For the
more general class studied by Bottino et al., all the discussion
in this paper is unchanged except for the domain of analyticity
on the ! plane, namely the right half-l plane (Re | > —1)
instead of the whole finite [ plane.

*A. Bottino, A. M. Longoni, and T. Regge, Nuovo
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from k = 0 to —7 «. (Here p is the inverse range
of the potential of interaction.) It is more con-
venient in what follows to use the energy E = k’
ag variable instead of k. S(I, E) is then meromorphic
in the product of the finite ! plane, with the E
plane cut along the real axis from £ = —1u°to — <,
and again from E = 0 to 4 <. The branch point
at threshold (£ = 0), studied by Bottino et al.’
is a “winding” point, and is purely kinematical
and independent of the interaction. The cut from
E = —1® to —», however, depends on the po-
tential and involves the detailed dynamics of the
system. In what follows we shall not have occasion
to discuss the nature of this “dynamical” cut and
our E plane will always be cut from E = —1u°
to — .

By multichannel scattering, we mean the case
when the scatterer may have several excited states
a, b, - -, with binding energies E,, E,, --- . The
analytic properties of S (i.e. the element of the
matrix S) as a funection of ! have been studied by
Charap and Squires’ and others. For spinless
particles, the analytic properties in [ are the same
as those quoted above for single-channel scattering.
The analytic properties of S in the linear momentum
for fixed complex ! have been studied by Jaffe and
Kim* in the two-channel case. The analytic proper-
ties are similar to the single-channel case. The S
matrix considered as a function of k., and k, (where
k., ks are the momenta in channels a¢ and b re-
spectively) is meromorphic in the cut k,(k;) plane,
cut from k.(k,) = %ip to +iw, and again from
k.(ky) = 0 to —2«, when k, and k, are considered
as independent variables. The generalization to more
than two channels seems obvious.

The variables k., ks, --- are however not inde-
pendent, but satisfy®

E=FKE+E =k+E=-- (1.1

Considered as a function of E, S will thus have a
series of winding points at £ = E,, E, --- , in
addition to a left-hand ‘“dynamical” cut along the
negative real axis. Otherwise, the function is mero-
morphic in the whole finite E plane.

3 J. M. Charap and E. J. Squires, Ann. Phys. (NY), 20, 145
(1962). [I have been informed by J. Charap that the proof
quoted here, though valid for spinless particles, is incomplete
for particles of arbitrary spins. The proof has been completed
in a later paper by the same authors.] I am grateful to J.
Charap for this communication.

4 A. M. Jaffe and Y. 8. Kim, Phys. Rev. 127, 2261 (1962).

§ One may also easily consider the more general case when
the scattered particle had different masses in different chan-
nels so that E = pke® + E, = poks? + Ep = ---, where p,,
p» are mass ratios for the different channels. We shall ignore
this possibility, however, for simplicity.
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The unitarity conditions and related symmetry
properties of the multichannel S matrix for integral
I have been discussed by several authors.’”® Take
as illustration the two-channel case, with E, > E,.
From the unitarity condition in the physical region
above the threshold of both channels, one can deduce
the matrix equation®

S(ka, k) S(—ka, —k;) = 1. 1.2

In the region E, < E < E,, however, the channel
b is not open, and we have a “little” unitarity con-
dition involving channel a only, which may be
written as’

Saa(ka, kb)Suo(_kay k) = 1. a 3)

Note that (1.3) is independent of (1.2). LeCouteur’
and Newton® have found further relations between
the matrix elements of S:

Sbb(kay kb)Sbb(km _kb) = 11 (1'4)
Sau(kay kb)Sab(_kny kb) = _Sab(kay kb)' (1 '5)

All these symmetries are kinematical and inde-
pendent of the interaction. Whereas Newton’s sym-
metry (1.5) does not seem to have any direct
physical meaning, LeCouteur’s relation (1.4) would
be the “little” unitarity condition if E, < E,,
and may thus be obtained by analytic continuation
in the binding energy E, from the region E, < E,
to the region E, > E,."°

These relations (1.2)-(1.5) can be generalized to
more than two channels,® the number of independent
relations increasing as ~2", where N is the number
of channels. These conditions relate the values of
the different S-matrix elements on different sheets
of their Riemann surfaces, and thus represent rather
stringent conditions on S as an analytic function.
[For example, LeCouteur’ has shown that for inte-
gral I, (1.2)-(1.4) imply that all the matrix ele-
ments of S can be generated by a single analytic
function defined on the same Riemann surface as
that of S.]

For complex [, the structure of the Riemann sur-
face becomes rather complicated and has infinitely
many sheets instead of the usual 2" sheets. The

¢ R. E. Peierls, Proc. Roy. Soc. (London) A253, 16, (1959).
(19%(1)*]). J. Le Couteur, Proc. Roy. Soc. (London) A256, 115

8 R. G. Newton, J. Math. Phys, 2, 188, (1961).

® K. T. R. Davies and M. Baranger, Ann. Phys. (NY), 19,
383 (1962). .

10 This analytic continuation in the binding energy E, is
immediately available in these simple models of multichannel
scattering. Since one knows that S is analytic in k, and ks
geparately when considered as independent variables, Eq.
(1.1) then shows that S is analytic in E and E; separately
with E; fixed.
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conditions (1.2)-(1.5) no longer hold but have to
be replaced by much more complicated ones. The
question was asked whether a simple representation
of S can be found which will exhibit all the known
analytic properties of S as a function of the two
complex variables I and E, and at the same time,
satisfly automatically all the symmetry conditions
(1.2)—(1.5). Such a representation has been found
in terms of a matrix function A(l, E) and a scalar
function B(l, E), both holomorphic in the domain
formed by the product of the finite ! plane with the
finite E plane, cut only along the left-hand dynamical
cut. The threshold branch points are explicitly
exhibited in the representation.

By requiring that A*(l, E) = A(l*, E*) and that
a similar condition holds for B, this representation
of S will then also satisfy the reality (time-reversal)
condition, which, in terms of S, is also rather com-
plicated for complex ! because of the winding points
at the thresholds.

The representation is closely related to the
Wigner'' B matrix in the theory of nuclear re-
actions.

The establishment of the representation and the
proof that it has the required properties shall be
presented in Sec. 3. The procedure is illustrated
first for the single-channel case in Sec. 2.

2, REPRESENTATION FOR A SINGLE CHANNEL
Following Bottino et al., we write

8@, k) = @, B)/fQ k™M, @)

where f(I, k) is the Jost function for complex !
and k. For nonintegral values of I, f(I, k) has a
winding point at k = 0, such that

11, ke***) = (1, k) + 2¢ sin xlf(l, ke™*").

From time-reversal invariance of the problem, one
shows that

2.2

¥, k) = f(I*, k*e™*7).
From (2.1) and (2.3), it is easily shown that
S*(l, k) = S7'(I*, k*). 2.9
From (2.1), (2.2), and (2.3), one can also show that
S*(I, k) = S(I*, k*e' e ™" + (1 — "), (2.5)

and from (2.4),*

1 E, Wigner and L. Eisenbud, Phys. Rev. 72, 29, (1947).

12 This formula connects the value of § on one sheet of
its Riemann surface to the next and should thus be used for
analytic continuation from the physical sheet to other sheets
f(;ﬁ com}f)l?x ! instead of (2.8), which holds only for integral
values of l.

2.3

CHAN, HONG-MO

S BISA ke ™ + 1 — D] =1. (2.6)

For integral values of I, the conditions (2.5) and (2.6)
reduce to the familiar relations

S*(1, k) = S(I, —k%), 2.7
S, k)8, —=k) =1, 2.8

which are, respectively, the reality condition and
the unitarity condition written in analytic form.
The conditions (2.5) and (2.6) are thus the correct
extensions of the reality and unitarity conditions
extended to complex ! and k.

Introducing the function R(l, k) as follows,

R(, k) = —ik**'[S(, k) + ¥ 7')/[8(1L, k) — 1], (2.9)

we have

SA k) = [RU k) — K YRA ) + 21,
(2.10)

R(l, k) is the generalization of the Wigner'* R func-

tion to complex values of ! and k. It can readily be

shown from (2.6)* that

R, ke™™) = R(L, k), u=0, x1, £2, ---,(2.11)

ie., R is an even function of % regular at £ = 0.
With E = &’ as variable, R is thus meromorphic in
the domain formed by the product of the finite [
plane with the finite E plane, cut only along the
left-hand dynamical cut. [Henceforth, this domain
shall be designated D(I, E).] Moreover, the converse
is also true, i.e. if R is an even function of k, then S
defined through (2.10) satisfies the unitarity condi-
tion (2.6), as is readily seen by substitution.

Taking the complex conjugate of (2.9), and using
(2.5), and (2.11), one finds that the reality condition
on R reads

R*(l, k) = e *"VR(I*, k¥). 2.12)
Since R is meromorphic in D(l, E), one can write
R(l, E) = ¢"'[A(L, E)/B(, E)], (2.13)
where (since e’*’ is entire) A and B are holomorphic
functions in D(l, E). For R satisfying (2.12), it
shall be shown in Appendix A that one can always
find A and B satisfying (2.13), and also™
AX(l, E) = A(I*, E*); B*(l, E) = B(I*,E*). (2.14)
Substituting (2.13) in (2.10), one then has the
representation
A(Z,E) — Z'k2l+le|'rlB(l,E)
A(l, E) + ,L-k2l+leirlB(l’E) !

81 am grateful to Professor Jost for pointing out that
this is not immediately obvious, and also for a subsequent.
helpful discussion.

81, k) = (2.15)
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where A and B are holomorphic in D(l, E) with
E = K. Moreover, if A and B satisfy (2.14), then
the representation satisfies all the known analytic
properties of S as a function of ! and k, the unitarity
condition (2.6) and the reality condition (2.5).

In Sec. 3, we shall generalize (2.15) to multi-
channel scattering.

3. THE MULTICHANNEL CASE

Following the procedure of Jost and Newton'
for the case of integral [, we write the Schrodinger
equation in matrix form:

(d*/dz")¥(2) + K*¥(z)

— [+ 1)/2°1¥(z) = V¥(z), 3.1
where K is a diagonal matrix, with diagonal ele-
ments k,, and k, is the momentum in the ath
channel. V is a symmetric real matrix potential,
where each matrix element satisfies certain condi-
tions, as, e.g., those required for Mandelstam’s ex-
tension of the Regge formula.' We remind the reader
that the actual form of the potential is unimportant
in this discussion.

We seek matrix solutions F(I, k, z) and &(, k, z),
where F(l, k, z) is defined by the asymptotic condi-
tion F(l, k, z) — F°(l, k, z) and ®(, k, z) by the
boundary condition at the origin &(, %k, z) —
®°(l, k, z). F°(l, k, ) and ®°(l, k, x) are both diagonal
matrices with
Fl &, 2) = G}

X exp [—iry(l + DIk H (ko2),  (3.2)
2.1k, 2) = 200 + Pk N ka). 3D

These solutions, F(I, k, ) and ®(l, k, ) may be
defined uniquely by integral equations as in Bottino
et al.> We shall write down only the equation for
F(l, &, x):

F(,k,2) = F°, k, z)
+ f Gl k2, OVRF(L &, § di. (3.4
The Green-function matrix G(l, k, z, £) is a diagonal
matrix with elements
Gull, by 7, B = ddre'BH Sk DH (6 )
— H(kDH S (ko)) (3.5)
One may then define Jost matrix as the Wronskian
F(, k) = W[e{, k, ), F(l, k, 2)], (3.6)
and the S matrix, following Bottino et al.’* as
S, k) = KW', ke *)F(, K Y™, (3.7)
U See, e.g., R. G. Newton, J. Math. Phys. 1, 319 (1960).
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In the above formulas, we have used & to denote
loosely the set of variables k., « = a, b, ¢ - -+ . Thus,
e.g., by k — ke™*" in (3.7), we mean k, — ke~ ‘"
for all @. It must be remembered, however, that
these variables k., are not independent but are
related by (1.1), so that quantities like the Jost
matrix F(I, k) and the S matrix S(I, k) are functions
of only one momentum (energy) variable which may
be taken as E. Because of (1.1), and the fact that
their definition depend explicitly on k.., these quanti-
ties, as functions of E, will be multivalued with
branch points at £ = E,, @ = @, b, ¢, --- , in ad-
dition to any further branch points they may have
as functions of the k,’s. It is thus convenient to
keep the notation with k explicit (interdependence
understood) in order to specify which branch of the
functions we are considering. Thus, for example,
k, — k™™ with all other kg’s fixed, means that we
take a circuit on the E plane once clockwise around
the point E = E, without enclosing any other
branch point; while ¥ — k ¢™** in (3.7), means we
take a circuit clockwise once around all the branch
points £ = E,,a = a, b, -+ .

We shall now study the branching properties of
the quantities defined above in order to establish
the required representation of the S matrix. From
the property of the Henkel function and the defi-
nition (3.2), one sees that®

+ 2isin #lF (1, k.e™*", 2). 3.8

Since Fj(l, ks, x) depends only on ks and not on any
other k, (a # B), the circuit k, — ke " will
leave all other Fy(l, ks, z) unchanged. This may be
summarized in the notation

Pk, z;ke > ke = F(, k, 2)
+ 2isin #lF°(L k, ; ko — ke *"P,., (3.9

where P, is the projection matrix into the ath
channel, namely a diagonal matrix with unity as the
ath element, and all other elements zero.

From the fact that G([, k, z, £ is regular at
ke = 0, @ = a, b, ¢ -+, and the circuit relation
(3.9) of F°(l, k, z), it can be seen by substitution
that

FQl, k,x) + 2isinxlF(l, k, z; k, — k.e ' ")P,

satisfies the equation for F(I, k, z; ke — koe 7).
The solution F(I, k, x) thus satisfies the same circuit
law (3.9) as F°(l, k, xz). Notice, however, that
F(l, k, ) is not in general diagonal, and the presence
of the projection operator P, means that only the
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ath column is altered by the double circuit around
E = E,, all other columns of F(I, k, ) remaining
unchanged.

It can readily be seen that the other solution
®(l, k, z) is regular at k, = 0, so that the definition
(3.6) and the circuit law (3.9) for F(l, k, z) imply
that the Jost matrix F(I, k) satisfies the same circuit
law (3.9).

A similar investigation as above shows that in
fact the Sth column of F(I, k) is even under a change
of sign of k., @ # B, i.e., more precisely,

F(l, k; ko — ke )Py = F(I, )Ps, B # a. (3.10)

From the circuit laws (3.9) and (3.10) of the Jost
matrix, one can deduce the branching properties
of the S matrix at the thresholds £ = E, from the
definition (3.7). One may deduce relations between
the matrix elements of S(I, k) and the matrix
elements of S with the sign of a number of ¥’s
changed. These relations would be generalizations
of the relation (2.6) to several channels, and also
analytic continuations to complex ! of the gen-
eralized unitarity conditions of Peierls—LeCouteur—
Newton.®"® These relations are, however, very com-
plicated and are, in fact, what we set out to avoid,
and since they are, in any case, implicitly contained
in the representation that follows, they are no longer
discussed.

Introduce next the Wigner K matrix in a similar
way to (2.9) as

R = —iK'"™ S — 1]7'[S + & 7K. (3.1))
We wish to show, as in Sec. 2, that R is in fact mero-
morphic in D(l, E). By definition (3.11), R is mero-
morphic whenever S is meromorphie. The individual
terms on the right-hand side of (3.11) have, however,
branch points at £ = E,, @« = a, b, ¢, - - - . To show
that R is meromorphic in D(l, E), it is thus sufficient
and mnecessary to show that these branch points
disappear in the combination (3.11). We must, there-
fore, show that R is unchanged by a small circuit
around E = E, (ie. k, — k.e™*") for any q, ie.,
the infinitely many sheets of the Riemann surface
all collapse into the £ plane.

By definition (3.7), R may be written

R, k) = —iK'"'[F(l, k)e'™ — F(l, ke *")]™"
x [F(l, k)eitl + F(l, ke—iir)eZi,rl]Kl.

Consider now the circuit k, — k,e ", with all other

ks unchanged. Then K' — K'C!, where C, is a

diagonal matrix with ¢”*" as the ath element and
all other elements unity. Thus,

C.=@1—-P,)+e'P,.

(3.12)

(3.13)
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Also, using the circuit law (3.9),
Flk; ko > ke ™)™ — F(l ke "3 ko = koe™™)
= F(l, ks ko — kae™ e’
— F(l, ke *"; kg — koe'™)
— 2 sin wlF(l, ke *")P,. (3.149)
By circuit law (3.10), this may be rewritten as
[F(l, k)e'™" — F(l, ke )1 — Po) + ¢ 7P,

= [FQA, k)e'™* — F(, ke™*MH]C***.  (3.15)
Similarly, it can be seen that
Fl,k; ko> ke ™)™
+ F(, ke™ '™ ko — koo™ )"’
= [F(, k)e'™" + F(, ke* ") "' 1C~".  (3.16)

The factors C**' in (3.15) and C' in (3.16) just
cancel those from the K factors outside in the ex-
pression (3.12). R is thus invariant under the circuit
ko — kq.e™'" for any «. The meromorphy of R in
D(l, E) is then established.

We may then write each of the matrix elements
in the form (2.13), where, without loss of generality,
we may take B to be the same for all elements.
Substituting into the definition (3.11) and solving
for S, one has

S — K—(l+})(A . iK2l+le—|'rlB)
X (A + K UB)TIKTY, (3.17)

This is the desired representation. A = A(l, E) is
a matrix, and B = B(l, E) a scalar. Both A and B
are holomorphic in the domain D(l, E). If 4 and B
satisfy (2.14), then the reality condition of 8§ is
satisfied by the representation (3.17). That (3.17)
satisfies all the generalized unitarity conditions of
Peierls-Le Couteur-Newton® ® is a matter only of
algebra involving elementary properties of de-
terminants, and will be proved in Appendix B.

We have thus proved (a) that the representation
(3.17) is always valid with A and B holomorphic
in D(l, E), and (b) that the representation satisfies
the reality condition, the generalized unitarity con
ditions, and all the analytic properties required.
Such a representation might be useful for further
investigation of the many-channel S matrix. For
example, we see that Regge trajectories are given
by a equation of the form

det (A + iK*"*%¢*"'B) = 0, (3.18)

which shows the manner in which a Regge trajectory
behaves at threshold, and as it crosses the threshold
cuts into other sheets.
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APPENDIX A

We shall show that if R satisfies (2.12), then 4
and B holomorphic in D(l, E) may be found satisfy-
ing both (2.13) and (2.14).

One may assume without loss of generality that
A and B in (2.13) do not have common zeros. Then
(2.12) implies

A*(l, E) = C(I*, E) A(l*, B%),
B*(l, E) = C(I*, EYB(*, B*), (A1)

where C(I*, E*) is any function of I*, E*. Since
A(l, E) holomorphic in I/, E implies A4*(l, E) holo-
morphic in ¥, E*, (A.1) requires that C(l*, E*) is
meromorphic in I*, E* in D(l, E). (D is symmetric
under the operation I, £ — [*, E*.) Since, by hy-
pothesis, A and B have no common zeros, C(l, E)
by (A.1) has neither zeros nor poles in D(l, E),
ie.,, C(, E) is entire. Taking complex conjugate
of (A.1),

Al E) = C*(*, ENC(I*, E*) Al E),

we have

(A.2)

C*(I*, EXC(I*, E*) = 1, (A.3)

except possibly where A(l, E) = 0. A being holo-
morphie, can only have isolated zeros, and C must
then satisfy

Cx(l,E)C(LLE) =1
throughout D, by analyticity.
Since C(l, E) is entire, C!(l, E) is also entire. One
may then define two new functions
A'(L, E) = [C(, B)FA(L, B),
B'(l, E) = [C(l, E)I'B{, B), (A.5)

which will then satisfy both (2.12) and (2.13), and
remain holomorphic in D(l, E).

(A.4)

APPENDIX B

The generalized unitarity conditions of Peierls—
Le Couteur-Newton® ® may be best stated in the
general case in the form of Davies and Baranger.’
Let the many-channel S matrix be partitioned into
submatrices
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g [SPP Sml '
SQP SOQ
Then
SPP(ku ka)SPP(_kP,kQ) =1, (B-l)

Serlkr, ka)Spa(—kp, k) = (—1)"*8pqlkr, k). (B.2)

Consider two matrices C = (Ci;), D = (d.;).
Let C* = (C'*) be the matrix formed by replacing
the first m rows of C by the corresponding rows of D,
and similarly for D* = (d#). Thus,

Ck%=d., ak = Ct’i)
for
=1, - j=1,---,N.
Then D' = (D,;/A), where A = det (d;), D;;
is the minor of d,; in D. This gives, for A = CD™?,
a;; = N.-,'/A, Where N.,‘ = Ek C,‘k Dik-
We wish to show that

?m’

Za“a;‘;:l, fOI‘ j=1,"',m.
=1
This follows, since with C;, = d%, C% = d,y,
m N m
2 NuN% = 2 dxDy 2. duDa
i=1 i=1 =1
+ dﬁ,D;‘; Z dledc
k¥l i=1
N -
= A*(A - > d,,lD,,,,)
p=m+1
_ N
+ T axDi(~ T dub,)
k=l p=m+1
N
= A*A~ X > d%D, X d,.D,
p=m+1 k 1

the last term being zero since d,; =
m -+ 1 and j # p.
Similarly, it can be seen that

Zl a0k = 6, for j, k< m, (B.3)

and
Z‘; a;at = —a;, for < m,p>m. (B.4)

It only remains to be noted that the many-channel
S matrix for integral ! both in the form (3.7) and in
the representation (3.17) is of the form C(k)C™* (—k)
apart from factors of the diagonal matrix K. In-
verting the signs of a number of k variables corre-
sponds to the * operation above. Using the rela-
tions (B.3) and (B.4), it is then easy to demonstrate
that the conditions (B.1) and (B.2) are satisfied for
both (3.7) and (3.17) for integral values of 1.
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The scattering properties of the relativistic two-body problem, governed by the Dirac equation, are
investigated. It is shown rigorously that the associated Hamiltonians are self-adjoint, that the as-
sociated wave operators exist, and that the scattering operator exists and is unitary, all under suitable
conditions on the potential. These conditions on the potential are analogues of those required for
the nonrelativistic two-body problem governed by the Schrédinger equation.

INTRODUCTION

N recent years there has appeared a substantial

body of literature devoted to a mathematical
formulation of scattering theory. Most of this work
has focused on the nonrelativistic two-body problem
governed by the Schrodinger equation. Results ob-
tained so far include a proof of the self-adjointness
of the associated Hamiltonians,' a proof of the
existence of the associated wave operators,”® and
a proof of the existence and unitary property of the
scattering operator,*'® all under suitable conditions
on the potential. The concepts involved here appear
to be fundamental in any approach to scattering
theory, and we may regard these results as a major
contribution toward a rigorous description of the
nonrelativistic two-body problem.®

It is tempting to suppose that the methods which
have proved so successful for the two-body problem
might be used to obtain a rigorous description of
some of the many-body problems of field theory.
These problems, however, are all cast in relativistic
form, and require an appropriate modification of
non-relativistic techniques. As a first step toward
these problems, we present here a study of the
relativistic two-body problem governed by the
Dirac equation. We show that the associated
Hamiltonians are self-adjoint, that the associated
wave operators exist, and that the scattering opera-
tor exists and is unitary, all under suitable conditions
on the potential. The conditions required are given
explicitly in the statements of the theorems below;
they turn out to be the analogues of those required
in the nonrelativistic case.

* Operated with support from the U. 8. Army, Navy, and
Air Force.
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1. GENERAL FRAMEWORK

We shall deal throughout the paper with the
following general framework: Let 3C denote a sep-
arable Hilbert space, and © a fixed dense domain
in 3¢. Let H, denote a symmetric operator defined
on D which is essentially self-adjoint there.! Let V
denote a symmetric operator defined on D and
majorized by H, in a suitable sense, to be made
precise below. Put

H=H+7V. (1.1)

In this situation we have at our disposal a number
of quite general theorems describing the properties
of H in terms of those of H, and V. We shall state
here without proof those which are essential to our
purpose. The first of them, established in 1951 by
Kato," runs as follows:

Theorem 1.1. Suppose for each f € D, V satisfies

VAl < « [[Hofll + 8 1]l 1.2)

where o and B are positive scalars independent of f,
and o < 1. Then H is essentially self-adjoint on D.
Proof: See Kato.!
If H is essentially self-adjoint on D, then we may
form the one-parameter unitary groups exp (tHt)
and exp (Ht) and define the transition operators

U(S, t) = €xp ('—ZHOS)
X exp [tH(s — £} exp (tH,i). (1.3)

In terms of the transition operators, we may define
the sncoming and outgoing wave operators

W. = lim U(0, §),

t—rw0

(1.49)

whenever these limits exist in a suitable sense. Qur
next result, which is due to Cook,* gives a criterion
for the existence of these limits in the strong topology
of 3C. The criterion is expressed in terms of a one-
parameter family of potentials derived from V,

V() = exp (—iH )V exp (iH,b). (1.5)
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Theorem 1.2. Suppose that for each f in a dense
subset of D we have

o+

[ ivonia < «.

Then the wave operators W. of (1.4) are defined in
the strong topology of 3C, and HW. = W.H,.
Proof: See Cook,” or Kuroda.?
Finally, we may define the scattering operator
S = lim lim U, f),

84w to—®

(1.6)

whenever these limits exist. Our final result gives a
sufficient condition for the existence of these limits
in the strong topology of 3C.

Theorem 1.3. Suppose V can be expressed as a
product AB of two operators A and B defined on D
and satisfying

(a) A is bounded,

(b) B exp (tHt)Af ts defined for each f & D,

and ||[B exp GHt)Af|| < K@ [Ifll,
where K(t) 1s independent of f,

© f K dt < 1. wn
Then the scattering operator S given by (1.6) is defined
in the strong topology of 3C, and s essentially unitary
there. Moreover, H,S = SH,.

Proof: See Prosser.’

For a discussion of the properties and physical
interpretation of the wave and scattering operators,
we refer the reader to references 6 and 7.

2., RELATIVISTIC FREE-PARTICLE WAVE FUNCTIONS

According to relativistic quantum theory, the
wave function associated with a single relativistic
free electron satisfies the Dirac equation

(tyd -+ m)y¥(z) = 0.

[We are using here the notation of reference 7:
¥ is a four-component spinor-valued funetion on the
Minkowski space-time manifold M,, v denotes the
Dirac matrix vector, and 8 the space-time gradient.
The scalar m represents the particle mass in suitably
normalized units. We adapt for the Lorentz metric
on M, the signature (+, —, —, —).]

Every (sufficiently regular) solution of (2.1) is
the Fourier transform of a spinor-valued measure g;

W) = @0 f,,, ¢ du(p).

.

2.1

‘ 2.2)

7 8. 8. Schweber, An Introduction to Relativistic Quantum
Field Theory (Row, Peterson and Company, Evanston,
Tlinois, 1961).

1049

It follows from (2.1) that u(p) must satisfy

(rp — mu(p) = 0. 2.3)

This system of four equations admits nontrivial
solutions only if

det (yp — m) = p* — m’ = 0. 2.9

Thus, u(p) must have support on the hyperboloid
P’ — m® = 0. We shall consider here only measures
of the form

#(P) = 5(2’2 - mz)x(P);

where x(p) is a spinor-valued function which is
locally integrable on M,.

Not all measures of the form (2.5), however, are
solutions of (2.3). To see this, we introduce the
matrix-valued functions A.(p),

2.5

Adp) = (Fvp + m)/2m, (2.6)
which satisfy the conditions
A.D)* = Ap),
A(p)A.(p) = (_pz + mz)/4m2, 2.7

A+ A = 1,
A_(+p) = A(—D).

We then define the projection operators A. on
measures of the form (2.5) by

(Aw)(@) = @° — M)A (D)x(D).

Then we have

2.8

b= A+ Ap, 2.9

and it follows from (2.7) that p satisfies (2.4) if
and only if A_g = 0, and in this case we have

v = (A.w)(p)
= 3p° — m")[lyp + m)/(2m)Ix(p).

Substituting (2.10) into (2.2) and integrating over po,
we obtain

(2.10)

o) = @0 [ 7% @) + ¢ @] dp/ep), @10
where we have put

po = p) = +@° + MmO}, (2.12)
and

X" (@) = Bm) A Dx(£p).

These considerations suggest the following ar-
rangement: Let 3¢ denote the space of all spinor-

(2.13)
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valued functions ¢¥(p) defined on E; such that the
norm

W= [ vord @9

is finite. Here, |¢(p)|* denotes the sum of the squares
of the absolute values of the four components of
¥(p). 3 (modulo functions of norm zero) forms a
Hilbert space under this norm. For each function
¥(p) in 3¢, define

v ) = £0’'m/@A(EP YD), (2.15)

where A.(p) is the function A.(p) with p, = &(p).
We observe that ¥*(p) and ¢ (p) are orthogonal
in 3C, and

@) = ¢ () + ¢ (). (2.16)

Hence,

Nl = [l + 171 (2.17)
Let D be the subspace of 3¢ consisting of those func-
tions ¢¥(p) such that ¢(p)¥(p) also lies in 3C, and for
such functions define

(Hoh)®) = pot®) = «@¥" (@) — ¥ @-

Then, since H, is a multiplication operator acting
on a maximal domain, it is well-defined and self-
adjoint on D. The action of e'“** on ¥(p) is given by

D@ = & PVE) + DY) (219)
Next, define ¢(x) via

(2.18)

v = @07 [ ey@ds, (220

and observe that from the Plancherel relations we
have

IF = [ e dx.

Thus, we may regard ¥(p) and ¢(x) as different
representations of the same element ¢ of 3C. The
actions of H, and ¢'7** on ¥(x) are determined via
(2.20); in particular, we have

€™ 9@ = @m™

X [ @) Py @) dp. (2:22)

(2.21)

This agrees with (2.11) if we put

x"(0) = £eP)¥ (D). (2.23)

It follows that ¢(x, t) = (e'"*¢)(x) is a (weak)
solution of the Dirac equation (2.1), and that every
solution which lies in 3C at time ¢ = 0 must be of

PROSSER

this form. In particular, the development in time
of every such solution is unitary. (More generally,
it can be shown that the norm (2.21) is invariant
under the action induced on 3C by the inhomogeneous
Lorentz group, and that this action constitutes an
irreducible representation of the group.)®

Next we present an explicit description of the
action of ¢”** on ¥(x).

Theorem 2.1. Suppose ¥(X) s continuously dif-
ferentiable on Es. Then for each t # 0, the function
(e**'Y) (x) s given by
e (@) = 184y Y(x)

=@ [ isova-ndy @20

where S,(X) 1s a matriz-valued distribution on E,
given by

Sx = S, = 8Sx, ) + S, ). (2.25)
Here
S*(x, ) = (=13 + mA“(x, 1), (2.26)
with
At(x, &) = @n)im?/2
[ H®[m(@# — )Y .
- m(tz - 7‘2)} ].f t < ‘_r,
x 2 Klme = O o o

r  m@ — tz)i
HOm(E = )]
T m(tz _ TZ)Q
and A"(x, t) = A*(x, £)*. The symbol * in (2.24)
denotes convolution on Ej;, to be inlerpreted as de-
scribed below.
Proof: From (2.15) and (2.22) we have
@™ 9@ = Y@ + ™Y )E), (2.28)

where
€™'y)(x) = @2m)7}

0
ipx_=ic(pye ¥ M
X . eMe ) A(Ep)y(p) dp.

Now consider the effect of replacing ¢ by ¢, =
t + 43, where & > 0. Then (¢'"*"¢")(x) is well-
defined via (2.29), and we have

eiHot¢+ —_ 'LS+ * 70¢
=0 [ s on'va - v dy, (230)

8 V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
U. 8. 34, 211 (1948).

if r <t

(2.29)
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where
S'(x) = S*'(x, t)

- ipx_ i dp
= § iPXie(p)ty
(2n) L e e 2mA.(p) D)

S ~3 ipX_1e(D) ¢y _dL
= (—iyd + m)©2m) fEe oot 7B (231)

= (—iyd + m)A*(x, 1,).

Note that as long as & > 0, A™(x, t,), and hence
S8*(x, t,), is an integrable real analytic function of x
on FE;, so that the convolution in (2.30) is well
defined. Similarly, (¢*7***¢7)(x) is well defined and
given by

iS” * "y,

es'Hotn"P - (232)

where
87 (@) = 8 (x, %) = (—vd + mA~(x, £%). (2.33)

Now a standard bounded convergence argument,
together with the Plancherel relations, shows that
i8S * 4% + iS” * 4°y converges in the mean-square
sense to ¢’ 7Y as § — 0.

Now the function Az, t,) = A™(x, ¢,) + A™(x, &*)
remains analytic on E; as 6§ — 0, except on the
sphere t* — r* = 0, where we find a singularity
of the form

Alx, 1) = (2m)*()
X [6(F — ) — ImP0(f — ) + ---]. (2.34)

Here the remainder is continuous at # = 7°. 6(§)
is the standard Heaviside step function given by

it >
0F) = {1 i £20, (2.35)
0 if £<0,
and (%) is given by
7(§) = 26 — 1. (2.36)

Moreover, A(x, t) vanishes outside this sphere. A
similar statement holds, of course, for S(z, 7).

Now if ¢ is continuously differentiable on Fj,
then Y(x—y) may be expanded near the sphere
£ — r’inthe form [x — y = (7, 6, ¢)],

Yx —y) = A6, ¢) + (#* — )B(r, 8,¢), (2.37)

where B(r, 6, ¢) is continuous at £ = r*. It follows
by standard methods that the limit as § — 0 of
the convolution (2.24) may be evaluated for each
point x of E,.

Of special interest is a variant of theorem 2.1
which holds whenever ¥ (x) has compact support
and ¢ is so large that the sphere t* — * = 0 lies
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outside this support. Then the singularities of S,
do not enter the convolution in (2.24) for small
values of x.

To formulate this result precisely, we introduce
the projection operator E; on 3C by

Eride) {m if |o| <E,

0 if |z| > R.

Corollary 2.2. Suppose ¢ € 3 and t > 2R. Then
(Exe'™ ' Ex¥)(x) = i(E228.) * v (Ery)(®). (2.39)
Proof: If ¢ is continuously differentiable, we have

(EnemotER‘f/)(x) = 1ER(S, * ’YOEREI/)

{(2@-* [ ison'ENE - dy i bl <R,

0 if

(2.38)

lz] > R.
(2.40)

Now if || < R and |x — y| < R, then |y] < 2R,
and the integral in (2.40) vanishes for |y| > 2R.
Hence we may replace S.(y) by (E.zS:)(y) in the
convolution, and obtain (2.39) for differentiable func-
tions. Now if ¢ > 2R, then (F.zS.)(y) has no
singularities in E; and the convolution in (2.39)
is well defined for all ¢ in 3C. Since differentiable
functions are dense in 3¢, we conclude that (2.39)
holds for all ¢ in 3¢, as required.

3. INTRODUCTION OF POTENTIALS

In the presence of a static electromagnetic field,
the Dirac equation (2.1) is modified by the addition
of a term describing the action of the field potential

(tvd + m)Y(z) = eV(@1"¥(), CRY

where V(z) is a prescribed function representing
the field potential, and e is a positive scalar repre-
senting the charge. We shall assume throughout that
V(z) = V(x) is independent of time, and is locally
integrable on Ej.

If () is any solution of (3.1}, then

(—186¥)(z) = 7°[iyd — m + eV(X)y"1¥(2)
=H + Vyx @2
where Hy¢ is defined in (2.18), and Vv is given by
(V) = eVR¥E). (3.3)

It follows that if ¥(x) lies in H at time { = z, = 0,
then it lies in 3C for each time ¢, and its development
in time is given by

Y@) = ¥(x, 1) = " Y(x), 3.9
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provided only that H = H, + V is well-defined and
essentially self-adjoint on JC.

Now V is a multiplication operator on ¥(x). If
V(%) is bounded, then V is a bounded operator, and
satisfies the condition (1.2) of theorem 1.1 with
a = 0. It follows from theorem 1.1 that 3C is es-
sentially self-adjoint on D.

It is of some interest to extend this result to
unbounded potentials. Our next result gives con-
ditions on V(x) which ensure that theorem 1.1
applies even through V(x) is unbounded. We utilize
the arguments developed by Kato' and extended
by Brownell.’

Theorem 3.1. Suppose V(x) les in £, where
3<p<L . Then

[1V¥lls < e [[Hotll: + 8 [[¥]],

with a < 1.
Proof: According to a straightforward extension
of the Holder inequality,'® we have

Vell: < [V [1¥le (3.6)

where 1/p + 1/¢ = 3, and p > 3, g > 6. Now a
similar extension of the Hausdorff-Young ine-
quality*' yields

[1¥lle < const [[x[]., 3.7

where 1/q + 1/r = 1, with ¢ > 6, r < §, and x
is related to ¢ via (2.11). Here we define the £,
norm of'jx by

(3.5)

Ixll; = [ k@I dp. (3.8
E,
Finally, the extended Holder inequality gives
Hfo < ”(e + >‘)XHz ”(e + >‘)-1”n (3.9)

where 3 + 1/s = 1/r, with r < §, s > 3. Here
¢ + M\ denotes the function e(p) + N, with A a
positive constant at our disposal.

Now we note

[(e + Nxll: < lexllz + N [Ixl]2

= [|Hox|ls + N [[x[[s,  (3.10)
which is finite whenever x & 9. Moreover,
[Ite + N 7*], < const A®*/*, (3.11)
since s > 3. Thus if x € D, we have
|Ix|l. < const " |[Hox]l> + |Ix/])N* (3.12)

9 F. H. Brownell, Pac. J. Math. 12, 47 (1962).

10 N, Dunford, and J. Schwarz, Linear Operators (Inter-
science Publishers, Inc., New York, 1958), p. 527.

u R, C. Titchmarsh, Infroduction to the Theory of Fourier
Integrals (Clarendon Press, Oxford, England, 1937), p. 96.
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and it follows from the Plancherel relations that

Vel £ VI ¥l
< const ||V]], A" ||Ho¥|l: + ||¥]]A** (3.13)

whenever ¥ € D. Since A is arbitrary, we conclude
that the operation of multiplication by V(x) is
majorized by H, in the sense of (3.5) with « arbi-
trarily small. Theorem 1.1 now tells us that H =
H, + V is essentially self-adjoint on D.

If V(x) is the sum of potentials in different £,
spaces (p > 3), then, since each summand satisfies
(3.5) with « arbitrarily small, so does V. In par-
ticular, if V(x) is a sum of potentials with disjoint
supports (apart from sets of measure zero) and
lying in distinct £, spaces (p always > 3), then V
satisfies (3.5) and theorem 1.1 holds.

It is unfortunate that theorem 3.1 does not cover
the Coulomb and Yukawa potentials [V(x) ~
(4xr)™" €™*'] because the singularity at the origin
is not p-summable for p > 3. Apparently a deeper
analysis is required for these special cases. We shall
not attempt to include them here.

4. EXISTENCE OF THE WAVE OPERATORS

We have now constructed the framework de-
scribed in Sec. 1. In this section we shall show that
the hypotheses of Theorems 1.2 and 1.3 are satisfied
within this framework.

We begin with a lemma describing the behavior
of functions of the (Er ¢’ 'Ez¢)(x) as t — + =,
where E 3 is given by (2.38).

Lemma 4.1. Suppose ¢ € 3C. Then

[|Eze’™ Exy|l. < ||End|l. forall ¢, (4.1)
[|Eze' ™ Exyl|le < const [¢|™} ||Ex¢]|, for |¢| > 4R.
4.2)

Proof: The first of these follows from the fact that

e'™" is unitary and E; is a projection, and it holds

for all times ¢. For the second, we use corollary 2.2
and observe that

||Bze™ Erd|le = [[(E2zS) * v'(Ex¥)|l-
< 1BSile ||Er¥]l.  (4.3)

Now if ¢ is in 3¢, then E z¢ is integrable, and ||E z¥/|,
is finite. On the other hand, if |f| > 2R, then E;zS,
is bounded, since

Ez8,(x) = {("”’a +mAk, ) if x| < 2R,
0 if |x|] > 2R,

and A(Z, ¢) is singular only where |z| = [t|. Now if
Ix| < 2R < ||, then
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Ju[m(f — )}

(7vé — m)A(x, t) = const (iyd — m) —m

2 g
= const {%[%ﬁt—_—ﬁ%z—] iy’ + vx)

m
_ . Lm@ = r%*]}
mw . 4.5
This function is certainly bounded for [r| < 2R.
Moreover, it follows from known properties of the
Bessel functions' that, for r < 2R < 4R < |f,

Jolm(f — )]
' [m(¢* — )P

< const (tz _ rz)—}(2p+1)

(4.6)

On the other hand, the term |y’ + yx| is majorized
by const |¢|. Combining, we find that

[|E228:(@)| ]« < const [¢]7}, @.7

and (4.2) follows from (4.3) and (4.7). Finally, we
observe that the constant in (4.2) may be chosen
independent of R as well as of ¢.

Now we turn to the question of existence of the
wave operators. We shall show that under appro-
priate conditions on the potential V(x), the condi-
tions of theorem 1.2 are satisfied.

Theorem 4.2. Suppose V(x) is such that

(@) |ErV]||s < = for all R,

(b) |1 — Egr)V|le < const R" for large B

and some n > 1.
Then if ¥(x) 18 infinitely differentiable and has com-
pact support,

< const |£]7***,

[Civedla <=, @9

and H, and V satisfy the conditions of Theorem 1.2.
Proof: Choose R, large enough so that both

Exy = ¢ and ||({ — Ep)V|lo < const R™" for
all R > R,. Now suppose || = 4R > 4R,, and
consider
V@l = [[Ve™ gl
< B V™ Y|l + [|(Er — Er)Ve™'¢|ls
+ ||(I — Ex)Ve'™ ||,
The first term here is majorized by
||Bz Ve'™ ¥|ls = ||[VEre ™ Er¥llz

< B Vl2 {|Ere™ Erd]=

< const [#["}, since [¢f| > 4R,. (4.10)

12 G. N. Watson, Treatise on the Theory of Bessel Func-
ticm;,) (Cambridge University Press, Cambridge, England,
1922).

(4.9)
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The second term of (4.9) is majorized by
[|(Er — Eg,) Vemdﬂlz
S |(Br — Er)V|]: ||Exe™ Erd||o
< const R**™*" X const |¢|}
< const [¢[7". (4.11)

Finally, the last term in (4.9) is majorized by
[l — EnyVe™ |l < || — Ex) V|- |l ¢]]s

< const B [/l

< const [£|7". (4.12)
Thus we conclude that if |{|] > 4R,, then
[[V()¥|ls < const £7". (4.13)

Now if ¢(x) is infinitely differentiable and has com-
pact support on Ej; then it follows from (2.24)
that the same is true of ¥(x, #) for each time ¢
Thus for |{| < 4R, the function ¥(x, ¢) is infinitely
differentiable and has compact support on M,, and
in particular is bounded there. It follows that for
|| < 4R,

VY]l = ||Esz, Ve ™ ||
< ||Esz V]2 |6 ¢
< const ||¢][s- (4.19)

Combining (4.13) and (4.14), we obtain (4.8), as
required.

In a quite similar way, we shall establish the
existence and unitarity of the scattering operator
by showing that, under appropriate restrictions on
the potential, the conditions of Theorem 1.3 are
satisfied.

Theorem 4.3. Suppose V(x) 18 bounded and has
compact support. Choose K large enough so that

ERV = V. Then
Bz V|l < K@) [1¥]ly  (4.15)

where

f K(t) dt = const [|V]l..  (4.16)
In particular, H, and V satisfy the conditions of
Theorem 1.3 if ||V ||« is sufficiently small.

Proof: If |t| < 4R, we have

[[Eze™ Vlls < [[V¥]la < Vo [[¥]le (4.17)
If |¢{| > 4R, then by Lemma 4.1,
|Eze ™ V|l = ||Eze’™ ' ExV¥|2

< const |7} ||Vl

< const ,tl_* HE=V(|2 [[¥]]2

< const [¢f| MR’ ||V [[¥]l.  (4.18)
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Combining (4.17) and (4.18), we obtain (4.15), as
required.

5. DISCUSSION

We have shown that, under suitable conditions
on the potential, the Hamiltonian operator for the
relativistic two-body problem is essentially self-
adjoint on the associated state space and that the
wave operators and the scattering operator exist
in the strong sense. The conditions required for
these results are more or less natural analogues of
those required in the nonrelativistic form of the
problem.

There are one or two differences, however, which
should be emphasized. We have already observed
that our proof of the self-adjointness of H (Theorem
3.1) excludes the Coulomb and Yukawa potentials
because of their singularity at the origin. This is
not true in the nonrelativistic case, and the dif-
ference is a reflection of the fundamental difference
between the relativistic and nonrelativistic free-
particle Hamiltonian operators. We note here, how-
ever, that our proof of the existence of the wave
operators does not exclude the Yukawa potentials,
so that if the self-adjointness of the Hamiltonian
is known for these potentials, then the existence of
the wave operators is assured. The Coulomb po-
tential remains excluded because of its behavior at
infinity, just as in the nonrelativistic case.

The conditions required for our proof of the
existence and unitarity of the scattering operator
are too restrictive to admit any potentials of physi-
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cal interest. Moreover, they imply that the system
admits no bound states.’ It seems likely that our
formulation of this result is nmot the best possible
for the relativistic two-body problem, and that the
scattering operator actually exists for a much broader
class of potentials. The best formulation of this
result in the nonrelativistic case comes from a
theorem of Ikebe* on the existence of an eigenfunc-
tion expansion for the total Hamiltonian of the
problem. The scattering operator may be described
explicitly in terms of these eigenfunctions, which
must in some sense contain all the structure in-
herent in the Hamiltonian. It seems reasonable to
suppose that a similar result can be obtained in this
way for the relativistic case.

In spite of its shortcomings, our result commands
a certain academic interest. First of all, it does prove
that Dyson’s construction of the scattering operator
can be made rigorous at least for a class of potentials
broad enough to approximate any physically real-
izable potential as closely as desired. Second, our
result forms a starting point for the investigation
of certain problems of quantum field theory, in
which the interaction terms contain form factors
which approximate the delta functions of point inter-
actions, and which may be conveniently chosen to
satisfy the requirements of Theorem 4.3.

There is no difficulty in principle in extending the
results of this paper to potentials with several com-
ponents. In particular, the tensor and spin-orbit
potentials of nuclear scattering problems may be
treated by the same methods.
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In a continuous representation of Hilbert space, each vector ¥ is represented by a complex, con-
tinuous, bounded function y(®) = ($, ¥) defined on a set & of continuously many, nonindependent
unit vectors & having rather special properties: Each vector in & possesses an arbitrarily close neigh-
boring vector, and the identity operator is expressable as an integral over projections onto individual
vectors in &. In particular cases it is convenient to introduce labels for the vectors in & whereupon
each ¥ is represented by a complex, continuous, bounded, label-space function. Basic properties
common to all continuous representations are presented, and some applications of the general for-

malism are indicated.

INTRODUCTION

HE essential ingredients in the basic structure

of quantum mechanics are surprisingly few:
(i) unit vectors in a Hilbert space $ correspond to
states of a system; (ii) dynamics or scattering in-
volves an automorphism among unit vectors; and
(iti) the natural inner products in $ are interpreted
as probability amplitudes. Physics enters, as well
as being read out of the formalism, by means of
one or more mappings 9M from appropriate label
sets characterizing the physical problem into unit
vectors in . For example, the “in” and “out”
states of scattering theory are manifestations of
two different mappings into $ of a parameter set
including four-momentum, spin, baryon number, etc.
However, independent of the particular form a map-
ping takes, it provides the ‘‘bridge” between the
abstract quantum formalism and the label-space
framework in which stochastic statements pertinent
to a particular system are made.

Now dynamics, or any other Lie group of auto-
morphisms, entails a continuous permutation among
unit vectors in §. It would frequently be desirable
to have Hilbert-space representations expressed as
label-space functions, admitting direct parameteriza-
tion of such continuous transformations simply by
means of label-space transformations. That is, the
labels by themselves are rich enough to parameterize
continuous permutations among unit vectors in $.
This clearly requires that the lables must in part
assume values in the continuum. For present
purposes, such a requirement rules out representa-
tions wherein vectors are functions of discrete
variables, e.g., the eigenvalues of a complete set
of commuting observables with discrete spectrum.
The Dirac prescription to generate representations
with continuous labels (e.g., the Schrédinger repre-

sentation) cannot be regarded as a continuous map-
ping of the label space into unit vectors in $. Instead,
continuity demands that the image set of unit
vectors & cannot be an orthonormal set, but, in
contrast, © must contain vectors arbitrarily close to
one another. This basic property is common to all
the image sets © we consider, and is fundamental
for the definition of a continuous representation. Ac-
counts of specific label sets, mappings, and con-
tinuous representations will be treated in the follow-
ing paper,’ and in subsequent papers in connection
with various applications. Here it is our purpose to
present the requirements on the mapping 9 and
the image sets & that are necessary for a continuous
representation to exist, and to discuss some of the
basic properties of such representations common to
all systems.

POSTULATES OF CONTINUOUS-REPRESENTATION
THEORY

We choose a Hilbert space 9, finite- or infinite-
dimensional, with positive-definite metric. Among all
the vectors in §, let us focus our attention on unit
vectors, to be universally denoted by & with an
arbitrary array of sub- or superseripts, etc. Thus

(@, 9 = [[2]| = 1 = [ja]| = ||&']| = --- .

Let ¥ denote the set of all unit vectors, and & denote
a subset of T: & C . It is the set & that will be
the image set of the mapping 9. Then, we assert

Postulate 1. (Local density and continuity). For
each ® € & and every & > 0, there exists a vector
¥ € &, different from ®, for which ||® — &'|| < 8.
The set & is an arcwise connected subset of § or a
union thereof.

1 J. R. Klauder, J. Math. Phys. 4, 1058 (1963) (following
paper).
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Clearly, the conventional orthonormal basis set fails
to satisfy Postulate 1.

Further, let £ denote the “label” space whose
points I may be correlated with vectors in & by the
mapping M of £ onto &. Regarding this correlation,
we require

Postulate 2. (Label continuity). The mapping 9N:
l — &[l] is a many-one continuous map of a Haus-
dorfi, i.e., separable topological space £ onto &. By
continuity in &, we mean the usual weak continuity
in . Thus if I, — I, then ($[L,], ¥) — (®[l], T) for
all v € O.

It is often the case that the topology for £ is the
usual topology where open sets are identified as
open intervals. The basic purpose of this postulate
is to provide a parameterization, i.e., a ‘“handle”
for the states in &.

For purposes of using the vectors in & to define
a representation with as familiar a form as possible,
we assume

Postulate 3. (Completeness and resolution). The
set © spans the space 9, i.e., completion in norm
of the set of all linear combinations of elements in
© yields $. A resolution of unity in  exists as an
integral over projection operators onto individual
vectors in ©.

When & is locally compact, then the last postulate
means that some additive real measure u on ele-
mentary sets in & exists such that

v

fi

L & dy (3)(2, ¥,

or

(¥, ¥)

@

for arbitrary vectors ¥ and ¥'. If & is not locally
compact, the concept of integral can be generalized
to give meaning to (1), e.g., in the manner of
Friedrichs of Shapiro.®? The only role of u shall
be to generate the expansion (1), a restriction
which, in general, is insufficient to fix x uniquely.
It is certainly plausible, therefore, and we shall
provide a simple proof in the Appendix, for a com-
pact set &, that (i) because of invariance under
unitary transformations, and (ii) the existence of
(1), we have

L @', &) du (8)(2, ¥),

2 K. O. Friedricks and H. N. Shapiro, Proc. Natl. Acad.
Sci. U. 8. 43, 336 (1957); Integration of Functionals, New York
University, Institute of Mathematical Sciences (1957).
Here we treat such cases formally.
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Theorem 1. (Invariant measure.) There is no loss
of generality in assuming p invariant under any and
all unitary transformations U that leave the com-
pact set G invariant: US = @&. The stated invariance
takes the form w(UR) = pu(R) for all R C &. A
suitable choice for u is one for which du(U®) =du(®).
Consequently, an important application of Theorem
1 arises if the group G of such unitary transformations
U forms a transitive permutation group on vectors
in & (e, if ® € S, then {UD | U € g} = &),
for then u can be chosen without loss of generality
as the invariant group measure. Examples of this
approach to find  are given in the following paper.’

Form of the Continuous Representation

Equation (1) provides the basis for a continuous
representation of Hilbert space. In such a repre-
sentation, the vector ¥ is represented by the com-
plex, bounded, continuous function

Ye) = (2,9); =9, @)
[or by ¥(I) = (®[l], ¥) if specific labels are intro-
duced]. The inner product of two vectors is then a
restatement of (1):

@, ) = f V(@) du (B)Y(3). )

Not all functions on & represent vectors, but only
those which satisfy

W) = [ m@; 8 d@ue, @
where the reproducing kernel
x(P'; ®) = (2, 9), ®)

as follows from Egs. (3) and (2). Furthermore, X
fulfills the indempotent relation

%@ e = [ %@ 9 du @%(2; 7). ©
=]
An operator & defined on & is represented as a
funection of two points in & by
®(®'; ®) = (¥, BP) @)

[or by ®@{’; I) if specific labels are introduced],
which is separately continuous in each argument
and bounded if ® is a bounded operator. The repre-
sentation of B is clearly

@@ = [ 6@; 9 & @@  ®
Not every function of two points in & represents
an operator, but only those which satisfy
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8@ ) = [ & ®) du (DX(®; )
= [ %@ 9 du (B6(®; &)

=[] ®@;e)du @

X B(®,; B2) du ($2) K(Dz; '), (9)

as follows from (7) and (8) and their adjoints.

It is clear that the set © plays an important role
in establishing a continuous representation and de-
termining its properties: Postulate 1 leads, with the
aid of continuity in the inner product, to continuous
functions ¢ defined on unit vectors; Postulate 2
leads, in turn, to continuous functions ¥ defined on
points of label space; and Postulate 3 ensures that
the functions ¢ provide a representation of . As
a matter of nomenclature, we call an abstract
set of unit vectors & that satisfies Postulates 1
and 3 an overcomplete family of states (OFS). As is
common in quantum mechanics, we shall often refer
to the continuous representation generated (in the
manner described above) by an OFS simply by
reference to the particular OFS itself.

Some Applications of Overcomplete Families of
States

An OFS may be used as any other representation
would be used in quantum or quantum statistical
mechanics. As such, the OFS appears generally to
be a more proper way to introduce vectors with
continuous labels than the conventionally used but
nonexistent eigenstates for operators with con-
tinuous spectra. In particular, there exists one special
choice of an OFS that is closely related to the Fock
representation of an infinite-dimensional Hilbert
space by entire analytic functions, which has recently
seen a renewed interest.’ For applications to field
theories, one natural set of “labels’” for the OFS are
the well-defined test functions of Distribution
Theory.*

In the following paper' we shall establish a gen-
eralized form of “‘classical” dynamics expressed in
terms of the continuously variable ¢-number labels
that characterize vectors of the OFS. This analysis
shows, for example, that, for certain classes of
Hamiltonians, we can exactly describe quantum
mechanics by the classical dynamical formalism

3V. Bargmann, Commun. Pure Appl. Math. 14, 187
(1961); Proc. Natl. Acad. Sci. U. S. 48, 199 (1962). For the
clos‘elgnrelated formalism, see reference 1, See. 2.C.

e type of labeling for boson fields is discussed by
H. Araki, J. Math. Phys. 1, 402 (1960).
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merely by reinterpreting the classical dynamical
variables as c-number labels belonging to Hilbert
space vectors. In addition, it is possible that over-
complete families of states may prove useful in
placing the sum-over-histories on a more sound
mathematical footing; already in formal studies
they have permitted the usual Fresnel integrals
to be replaced by absolutely convergent Gaussian
integrals.” On the other hand, an OFS may be
used for a Hamiltonian-less approach to dynamics
directly through a postulated evolutionary® or in—out
scattering automorphism.

Finally, it should be remarked that a natural
choice of an OFS for fermion degrees of freedom’
corresponds to the set of states generated by all
Bogoliubov transformations. Thus, this and other
OFS may be directly relevant in making interesting
approximations.

The author thanks J. McKenna for several
discussions.

APPENDIX

We wish to prove for compact sets & that the
measure on vectors in the resolution
@, = [ @ Ha@Ey Ay
-]
may be chosen invariant under all unitary trans-
formations leaving © unchanged. Let U be such a
transformation:

U = @. (A2)

Then unitary invariance of (A1) combined with (A2)
yields

W, %) = L @, UD) du (B)(US, ¥)

- [ @ 9@y Ay
&

Namely, if du(®) was a suitable weighting, we see

that an equally good weighting on vectors @ is

du(U™'®). If du(U™'®) = du(®), then the measure

already possesses the desired invariance. If u is not

invariant we may proceed as follows:

It follows from (A2) that U’® = &, where p
is an arbitrary integer. The generalization of (A3)
would imply that du(U®) is as good a weighting

5 J. R. Klauder, Ann. Phys. (NY) 11, 123 (1960), especially
I8)311%;,§ élzn)d pp- 142-153; S. S. Schweber, J. Math. Phys. 3,

s Such an approach to dynamics was discussed by J. von
Neumann, “The Theory of the Positron,”” Lecture Notes,

Institute for Advanced Study, Princeton, New Jersey, 1936.
7 See reference 1, Sec. 4.
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as du(®). If U is a cyclic element of order P, ie.,
U? = 1, then the combination

dur(@® = 2 3 du (U'9) A9)

=0
is invariant under U, dup(U"'®) = dur(®). Hence-
forth, we would use only the invariant form and
rename the measure du(®). This procedure can be
extended to include invariance under all eyclic ele-
ments that leave © invariant.

On the other hand, if U is not a cyclic element,
then we shall regard it as an element of a one-
parameter Lie group whose elements Ula] satisfy
UBlUla}] = U[B + «]. Invariance of the compact
set © under all powers of U leads by continuity
and Postulate 1 to invariance of & under the entire

JOHN R. KLAUDER

one-parameter subgroup containing U. We now can
form a quantity analogous to (A4), namely,
2u® = foz [ du Ul o, (45)
an expression which exists in virtue of the finite
parameter range in compact groups. Clearly, du. is
invariant under U[8], ie., du (U[Bl®) = du.(®).
Again we rename this invariant form du(®). By ex-
tending the preceding techniques to all invariant
transformations of &, we establish Theorem 1.
While the above proof holds only for compact
spaces, the left-invariant group measure as suggested
by Theorem 1 may always be examined for indi-
vidual noncompact spaces to see whether or not it
satisfies (A1).
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Continuous-Representation Theory. II.
Generalized Relation between Quantum and Classical Dynamics

Jonn R. KLAUDER

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 26 December 1962)

This paper discusses an application to the study of dynamics of the typical overcomplete, non-
independent sets of unit vectors that characterize continuous-representation theory. It is shown in
particular that the conventional, classical Hamiltonian dynamical formalism arises from an analysis
of quantum dynamics restricted to an overcomplete, nonindependent set of vectors which lie in
one-to-one correspondence with, and are labeled by, points in phase space. A generalized ‘‘classical”’
mechanies is then defined by the extremal of the quantum-mechanical action functional with respect
to a restricted set of unit vectors whose c-number labels become the dynamical variables. This kind
of “classical” formalism is discussed in some generality, and is applied not only to simple single-
particle problems, but also to finite-spin degrees of freedom and to fermion field oscillators. These
latter cases are examples of an important class of problems called exact, for which a study of the
classical dynamics alone is sufficient to infer the correct quantum dynamics.

1. INTRODUCTION

HE general postulates of continuous repre-

sentations of Hilbert space have been stated
elsewhere.” The overcomplete family of states, here-
after abbreviated to OFS and denoted by &, that
is involved in such a representation may be visualized
as forming one or more closed, connected ‘“patches”
on the unit sphere in Hilbert space defined by
[I®|| = 1. In order to discuss dynamics and time
evolution we shall define a path to be a continuous,
unit-vector-valued time function ®(f). Now, a
general variation of the path ®(¢), apart from simple

1 J. R. Klauder, J. Math. Phys. 4, 1055 (1963) (preceding
paper) hereafter referred to as 1.

ray rotations (e.g., ®() =
action functional

exp [2A()]®), in the

1= [ ne, dojdy — (@, 0t (1)
yields as the Euler-Lagrange equations, the Schro-
dinger equation of motion. However, we may ask
what are the dynamical consequences if Eq. (1)
is extremized over only a restricted set of paths,
such as those constrained to lie in &: ®(t) & &?

Through the study of a one-dimensional, single-
particle problem in Sec. 2,* we conclude that when

2 A brief discussion based on this example appears in J. R.
Klauder, Helv. Phys. Acta 35, 333 (1962).
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as du(®). If U is a cyclic element of order P, ie.,
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transformations of &, we establish Theorem 1.
While the above proof holds only for compact
spaces, the left-invariant group measure as suggested
by Theorem 1 may always be examined for indi-
vidual noncompact spaces to see whether or not it
satisfies (A1).

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 4, NUMBER 8 AUGUST 1963

Continuous-Representation Theory. II.
Generalized Relation between Quantum and Classical Dynamics

Jonn R. KLAUDER

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 26 December 1962)

This paper discusses an application to the study of dynamics of the typical overcomplete, non-
independent sets of unit vectors that characterize continuous-representation theory. It is shown in
particular that the conventional, classical Hamiltonian dynamical formalism arises from an analysis
of quantum dynamics restricted to an overcomplete, nonindependent set of vectors which lie in
one-to-one correspondence with, and are labeled by, points in phase space. A generalized ‘‘classical”’
mechanies is then defined by the extremal of the quantum-mechanical action functional with respect
to a restricted set of unit vectors whose c-number labels become the dynamical variables. This kind
of “classical” formalism is discussed in some generality, and is applied not only to simple single-
particle problems, but also to finite-spin degrees of freedom and to fermion field oscillators. These
latter cases are examples of an important class of problems called exact, for which a study of the
classical dynamics alone is sufficient to infer the correct quantum dynamics.

1. INTRODUCTION

HE general postulates of continuous repre-

sentations of Hilbert space have been stated
elsewhere.” The overcomplete family of states, here-
after abbreviated to OFS and denoted by &, that
is involved in such a representation may be visualized
as forming one or more closed, connected ‘“patches”
on the unit sphere in Hilbert space defined by
[I®|| = 1. In order to discuss dynamics and time
evolution we shall define a path to be a continuous,
unit-vector-valued time function ®(f). Now, a
general variation of the path ®(¢), apart from simple

1 J. R. Klauder, J. Math. Phys. 4, 1055 (1963) (preceding
paper) hereafter referred to as 1.

ray rotations (e.g., ®() =
action functional

exp [2A()]®), in the

1= [ ne, dojdy — (@, 0t (1)
yields as the Euler-Lagrange equations, the Schro-
dinger equation of motion. However, we may ask
what are the dynamical consequences if Eq. (1)
is extremized over only a restricted set of paths,
such as those constrained to lie in &: ®(t) & &?

Through the study of a one-dimensional, single-
particle problem in Sec. 2,* we conclude that when

2 A brief discussion based on this example appears in J. R.
Klauder, Helv. Phys. Acta 35, 333 (1962).
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evaluated for a particular restricted set of unit
vectors, parameterized or labeled by phase-space
points p, ¢ [the vectors of this set being given by (3)],
the quantum action functional, Eq. (1), reduces in
form to the classical action functional. That is,
Eq. (1) reduces to

I = f [p¢ — H(p, 9] dt.

Consequently, by extremizing (2) with respect to
just this special set of states, we would obtain the
classical equations and not the quantum equations.
While the action functional (2) and its extremal
equations thus have the classical form, these dy-
namical variables are still to be interpreted as labels
for Hilbert-space vectors. Likewise, the physical
interpretation of the theory still follows the sto-
chastic quantum prescription, i.e., vector inner
products are transition amplitudes. Thus, the dis-
tinction between classical mechanics based on (2),
and (an approximate form of) quantum mechanics
also based on (2), lies in the wniterpretaiion of p
and ¢ and in how results are read out of the form-
alism; the quantum interpretation generally leads
to an approximate form of quantum mechanics since
(1) is described by (2) for only a restricted set of
paths. We shall refer to an action functional of the
form (2)—wherein the variables p and ¢ are ordinary
c-number time functions, but which are interpreted
as labels for Hilbert-space vectors—as a ‘‘classical”
action functional and the Euler-Lagrange equations
derived therefrom as “classical”’ equations of motion.
We observe, therefore, that merely by reinterpreting
the c-number variables of the classical theory, we
can view the classical action functional as a re-
stricted evaluation of the true quantum mechanical
action.

The above example, suggested by the study of a
particular restricted set &, permits an obvious
abstract extension to an arbitrary set &. Namely,
the “classical” equations of motion relative to © arise
as a result of extremizing (1) over just those vector
functions for which ®(t) € &. Here we have a relative
definition of the attribute ‘‘classical’—its relative
nature depending on the size of the set ©—that is
generally applicable to any system with arbitrary
statistics.

As an extreme situation, suppose & were so large
as to equal ¥, the set of all unit vectors. In that
case, the resultant “classical’”’ equations would be
physically equivalent to the usual quantum-me-
chanical equations. It must be stressed, however,
that it is not always necessary that the set & be

@)
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as large as ¥ in order that the “classical” equations
be physically equivalent to the quantum equations.
For example, if 3 = 0, then extremizing (1) over
any (complete) set & would lead to ®(f) = ®(0)
for each vector ®#(0) & &; the completeness of &
would then correctly imply the simple evolutionary
behavior for any state vector in the Hilbert space 9.
This trivial example has the property that the exact
solution to the quantum-mechanical equations,
&(t), obeys ®(f) € & if only ®(0) € S; namely,
that the true extremal to (1) is a path that remains
in & if only it started in ©. This possibility is by
no means confined to the case 3¢ = 0, and for the
general case we introduce the

Definition: An exact “classical”’ action functional
I{®(t)} relative to the set & is one whose extremal
solutions correctly correspond to true extremal
vector-valued time functions. In other words, if the
true quantum solution ®(f) = ¢~****®(0) lies within
the complete set &, ®(f) € &, assuming only that it
initially lay within &, then the “classical” theory
is exact. If a “classical” action functional is not
exact, then we shall call it inexact.

Clearly the existence of an exact “classical’”’ action
functional depends strongly on both the set & and
the Hamiltonian operator 3C.

It follows as a corollary to the preceding defini-
tion that the value of the action evaluated for an
extremal path will vanish for an exact “classical”’
action principle. Therefore, for an action functional
to be exact, it is necessary but not sufficient (this
latter aspect is further discussed in Sec. 2) that

I@{éexuemal(t)} = O! (E)

when I is extremized with respect to all ®(f) € &.
We shall refer to this vanishing of I for exact action
principles as ‘‘criterion E.” If criterion E is not
obeyed then, of course, the action principle is
inexact.

It is the subject of this paper to study some proper-
ties of our generalized “classical’”’ formalism and
learn some of the consequences that arise from
restricted variations of quantum-mechanical action
functionals. In Sec. 2 we study in some detail the
properties of a single-particle, nonrelativistic, one-
dimensional example. For Hamiltonians linear in
the momentum and position operators, an exact
“classical’” action functional arises. Oscillator Hamil-
tonian operators can also lead to exact cases but
only for a unique choice of the set &. Other Hamil-
tonians lead to inexact equations of motion (unless
& becomes significantly enlarged). Our study of
canonical transformations suggests that partial
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physical significance of the dynamical variables is
contained in the important canonical kinematical
form, ih(®, d®), expressed as a function of the
labels. A resolution of unity and the associated con-
tinuous representation is also discussed.

Generalization of the preceding analysis to an
abstract N-dimensional Lie group of unitary trans-
formations is the subject of Sec. 3. Various formulas
are given for exact and inexact ‘‘classical’” action
functionals to discuss the “classical”’ formalism under
certain special circumstances. Of special note, a
fact which is stressed here possibly for the first
time, is that classical theories with nonunique solu-
tions may nevertheless have distinguished solutions
that exhibit the exact character of their equations
of motion, and therefore a study of these solutions
may in turn shed light on the quantum analysis of
classical theories with symmetries or with gauge
freedoms. As an example, the “classical’”’ action for
a two-component-spin degree of freedom is presented.

In Sec. 4 we discuss a particularly simple labeling
for a finite-dimensional Hilbert space where the
labels are simply the vector components them-
selves. Application is made to a single-fermion oscil-
lator, and generalization to a fermion field shows
that Dirac action functionals for ¢-number spinor
fields may be considered exact even in the presence
of external sources.

Our viewpoint of “classical” mechanics is simply
as quantum mechanics, evaluated for a restricted
class of paths. Quantization is, therefore, already
accomplished in part merely by the reinterpretation
of classical variables as vector labels. The continuity
of the labels and the corresponding continuity of the
associated vectors plays a fundamental role in our
dynamical viewpoint. It leads, for example, to an
essential difference between our formalism and that
of Schwinger’ who considers only orthogonal vector
or operator sets, and thus must exclude finite-
dimensional Hilbert spaces. Other recent abstract
dynamical studies include those of Sudarshan and
coworkers,* which focus almost exclusively on
operators forming an orthogonal operator basis and

their time evolution, generalizing earlier work of
Moyal.®

( 925 (.)I) Schwinger, Proc. Natl. Acad. Sci. U. S. 46, 883, 1401
1 .
+E. C. G. Sudarshan, Brandeis Summer Institute Lecture
Notes,” (W. A. Benjamin, Inc., New York, 1961), Vol. 2,
% 143. T. F. Jordan and E. C. G. Sudarshan, Rev. Mod.
hys. 33, 515 (1961). Related ideas appear in: E. H. Wich-
mann, J. Math. Phys. 2, 876 (1961); F. Bopp, Heisenberg-
Festschrift (Frederick Vieweg und Sohn, Braunschweig,
Germany, 1961), p. 128.
8 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
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2. AN ELEMENTARY EXAMPLE

A. An OFS Parameterized by Phase Space Points

Let us consider a single, nonrelativistic particle
free to move in only one dimension. We denote
Hermitian position and momentum operators by @
and P, respectively; these operators satisfy

[Q, P] = dh.

Along with these operators, let us introduce two
¢ numbers ¢ and p with the dimensions of coordinate
and momentum, respectively. We now build the
unitary operator

Ulp, g] = exp (—igP/h) exp (ipQ/h).
With the help of a fiducial unit vector &,, we define
®[p, ¢ = Ulp, q1%s; (3b)

each ®[p, ¢] is & unit vector and the set of these
vectors for all p and g define &. Thus, in the present
example, the label space consists of all points in
phase space, and the mapping from label points to
Hilbert-space vectors p, ¢ — ®[p, ¢], is a homeo-
morphism explicitly displayed in Eqgs. (3a) and (3b).
We wish to emphasize that ®[p, ¢] is not a particular
representation of a Hilbert-space vector, but it is a
vector in its own right.

In order for the set of states © to be an OFS
suitable for a continuous representation, it is neces-
sary that & and the labeling of the vectors therein
satisfy three postulates.' The verification of Post-
tulate 1 of I regarding local density and continuity
of the vectors in &, as well as Postulate 2 of I re-
garding labeling continuity may be established by
a study of the quantity

@', ¢';p @ = (2, ¢'], 2lp, ¢)

~ip’(a~a’) /% —~i(a—a’')P/h, i (p—p") Q/%
=¢ ip’(a—-a’)/ (‘1’0,6 s(e—-qa") /e-(r 2')Q/ ¢0)-

(3a)

@

X may be brought arbitrarily close to the value
one for fixed p and ¢, and X is in addition separately
continuous in p and ¢. Part of Postulate 3 of I,
the completeness of the set &, has been shown by
Moyal.’ Implicit in his work is the fulfillment of the
remaining condition of Postulate 3 of I, which will
be discussed in part C below. Hence, the vectors,
defined in Eq. (3) form an OFS. Rigorous proof of
this fact will be given in Part IV in collaboration
with J. KcKenna.

The preceding remarks are valid for any choice
of &,, independent of the fact that the set & clearly
depends on ®,. We wish now to eliminate some of
the arbitrariness of ®, so as to simplify the inter-
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pretation of p and ¢. In particular, we ask that

(®[p, 4], Pelp, q)) = p, (5a)
(®[p, ql, Q2[p, q)) = ¢, (5b)

two relations which impose on &, the modest
restrictions

(g, PDy) = 0, (6a)
(P, @P,) = 0. (6b)

Equation (6) follows as a consequence of (5) di-
rectly, with the help of the familiar equality

U”'p, ql(@Q + 8P)Ulp, ¢l = «(@ + ¢) + 8P + p),

where « and 8 are arbitrary ¢ numbers. Henceforth,
we shall assume Eqgs. (5) and (6) to be satisfied.

The adoption of (5) and (6) narrows the possible
forms that can be taken by & in Eq. (4). In par-
ticular, Eqgs. (5) and (6) lead to the following
canonical kinematical form:

h(®[p, ¢, d2lp, q]) = p dg, (@)

for a kind of differential form for K. We now take

up several aspects of this example in more detail.
Relation of Quantum and “Classical’”’ Dynamics®

In order to discuss restricted dynamical equations
with the aid of the action functional (1), we let
the unit vectors ®[p, ¢ € & be functions of time.
This we do simply by permitting p and ¢ to be
arbitrary, independent c-number time functions p(t)
and ¢(¢), and define

(1) = op(?), ¢®)]. ®

Note that the operators P and @ remain unchanged
here. Combining (7) and (8) we find

(@, d2/dt) = pg;

here, and elsewhere, the dot signifies a time deriva-
tive, ¢ = dq/dt.

With the help of the preceding expression, Eq. (1)
reduces to

Ie = [ bd - Ho, 91 di, ©

where
H(p, g) = (2[p, ql, 3P, Q2[p, q)
= (®, P +p,Q + 9%y)
= 3(p, 9 + O(k; Bo;p, 9).  (10)

Equation (9) has the form of a classical action func-
tional where the classical Hamiltonian is H(p, q).
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According to (10), we see that H(p, ¢) has the
functional form of the quantum mechanical Hamil-
tonian with explicit c-number substitution, i.e.,
3¢(p, ¢) plus an additional term © depending on #,
the fiducial vector &, as well as on the momentum
and coordinate. For nonpathological Hamiltonian
operators, © depends only on positive powers of 7;
hence in this case,

lim o(%; ®o; p, @) = 0.
#—0

Thus as &z — 0 we obtain H(p, ¢) = 3¢(p, ¢), which
is just the conventional relation in order that
H(p, ¢) be the appropriate classical Hamiltonian
for the system under discussion. In this same limit,
p and ¢ achieve their conventional, classical sharp
physical significance since, e.g.,

lim (2[p, ¢], (P — p)’@lp, g)) = 0.

When & — 0, it is clear that a stationary variation
of (9) yields the conventional classical equations of
motion, and not the quantum equations. For a
macroscopic system, where 3¢(p, ¢) > 0, we expect
the classical equations and interpretation to be very
accurate. Hence we have established that a re-
stricted variation of I over just those vectors ®(z)
which obey (8) yields essentially the classical equa-
tions of motion, for macroscopic systems, and in the
limit 2 — 0, it yields precisely the entire classical
“picture.”

But such limiting cases are not the only ones in
which the conventional classical equations can arise.
We shall shortly prove that, for any Hamiltonian
operator of the form 3¢ = iP* + V(Q), we can
always choose ®,, consistent with (6), so that ©
18 as small as desired for any system and not only
for macroscopic systems. Thus, with © small, we
again recover the conventional classical equations
of motion, but since & # 0, p and ¢ do not have a
sharp physical meaning, and these “classical”
variables must be correctly interpreted for what
they are: labels for Hilbert-space vectors as in (3).
Thus, simply by a reinterpretation of the classical
variables, we can regard the classical action func-
tional as a restricted evaluation of the quantum
action. With this wider viewpoint understood, ©
ceases to be conceptually bothersome, and we can
just as well regard H(p, ¢) itself as the “‘classical”
Hamiltonian; indeed, the harmonic oscillator is a
very important case where © is best chosen not to
vanish.

Certain classical statements contained in the
present formalism may be compared with those
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predicted by the conventional viewpoint based on
Ehrenfest’s theorem. This theorem states® that the
expectation values

P = (3(t), P3(), (11a)

Q = (2(1), Q2()), (11b)

satisfy Hamilton’s equations when ®(f) is the true
quantum solution. Clearly, for exact action principles
when the true solution remains within & the quanti-
ties defined in (11) are just those defined in (5).
For inexact action principles, however, (5) differs
from (11). From the point of view of this paper, the
equations of motion that follow from (9) are of
precisely the conventional form, e.g.,

dp/dt = —3H(p, 9)/dq.
On the other hand, Ehrenfest’s theorem leads to
dP/dt = (%(1), [3e, P1%(?))

= i[ic, P] = —a%(P, Q)/9Q,
the inequality holding as a general statement.
Therefore, while the label point of view for position
and momentum leads to Hamilton’s equations, the
expectation point of view in (11) for such variables
leads to Hamilton’s equations only in the limit
h—0.

Additional information regarding the ‘“classical”’
dynamics of our one-dimensional examples may more
easily be found if we first modify the set © in a
very simple manner.

B. Modification of the OFS to Include Phase
Factors

Instead of the set of vectors defined in Eq. (3),
let us choose

®[p, q,a] = Ulp, ¢, a]®, = exp (—ia/h)
X exp (—iqP/h) exp (ipQ/h)®,
to be members of &, where o, 0 < a < 27k is a

new c-number label. This expanded set of vectors
may be treated exactly as in part A above. In
particular, if p, ¢, and « become functions of time,
the action functional for this restricted set of umit

vectors has the form

(12)

Io = [ i +&~ Hp, 9ld,  (3)

where H(p, q) is the same as in (10). Clearly « in
no way alters the dynamics of p and g, nor is the

¢ See, e.g., L. I. Schiff, Quantum Mechanics (MeGraw-Hill
Book Company, Inc., New York, 1955), 2nd ed., p. 25.
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evolution of « determined by extremizing the action
(13). If a(t) remains a free and undetermined func-
tion, then Eq. (13) evaluated for ‘“‘an extremal
path” has not one but many values, which is why
arbitrary ray rotations were excluded in the con-
sideration of Eq. (1). Instead of regarding « as an
independent ‘‘classical” dynamical variable having
undetermined behavior, we shall elaborate a dif-
ferent viewpoint.

Along with the unrestricted set & defined by
Eq. (12), let us also consider a family of its subsets
restricted so that o = a(p, ¢, t) for various functions
a. Each of these restricted sets remains a valid OFS;
e.g., if we put ¢ = 0, we recover the set © discussed
in part A. We now consider several applications of
various OFS restricted by @ = a(p, ¢, t) where the
form of « is chosen to accomplish one or another
specific purpose, e.g., to share with the restricted
set a certain desirable property exhibited in the
unrestricted set.

Ezact “Classical”’ Action Functions

We wish to demonstrate that for linear and
quadratic Hamiltonians it is possible to choose
a(p, ¢) in (12) so as to obtain a determinate,
exact ‘“‘classical” system. This is possible in cases
where the unrestricted set (12) contains the evolu-
tion of its own members.

As a first example let us choose 3¢ = AP, where
A is a constant. It is clear that

o =

o) = ¢ "7"2(0) = 2[p(0), ¢(0) + t4, «(0)],

so that ®(f) & &. The phase o does not change at
all here so we may set @ = 0 for this example,
picking out the OFS discussed in A. Since H(p, q) =
Ap, it is clear that criterion FE is satisfied.

As a second example, let 3¢ = BQ, where B is a
constant. Then

B(t) = ¢ *29*3(0)
= &[p(0) — tB, ¢(0), «(0) + tBg(0)],

a vector which is of the general form of (12) for
all ¢. If we evaluate (13) for the indicated functions
D, ¢, and «, we see that criterion E is obeyed. An
alternate way to express a(f) is « = —pq, where
we arbitrarily choose a(0) = —p(0)¢(0). Thus, the
set of vectors of the form (12) restricted so that
a = —pg also contains the evolution of its members
for the Hamiltonian 3¢ = BQ. The ‘“classical’’ action
assumes the form —[ q( + B) dt which clearly
satisfies criterion E. Other choices of @ = a(p, g, )
are appropriate for the general linear case 3C,;, =

(14)
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AP + BQ + C, to exhibit the exact character of Ie.
For any linear Hamiltonian, © in Eq. (10) vanishes.

The fact that (13) may be exact for linear Hamil-
tonians can be seen as follows. The unitary trans-
formations Ulp, ¢, ] acting on &, in (12) form a
group in virtue of the closed Lie algebra of 1, P,
and Q; specifically,

Ulp, ¢, a]U’, ¢, ']
=Ulp+9p,9+ ¢, a+ o —pgl,

which, on introducing ®,, states that

Ulp, q, al®lp’, ¢, &']
=®p+p,q+ ¢, a+a —pgl. (15b)

Hence, for any evolution operator exp (—itic/h)
that can be expressed in the form Ulp, ¢, o], a
choice for a(f) [that implicit in (15b)] exists so that
the associated OFS leads to an exact action principle
satisfying criterion E. Such 3C are of the linear form
AP + BQ + C. A generalization to coefficients
A, B, and C that are functions of time offers no
difficulty.

To illustrate the analysis of quadratic Hamil-
tonians, we consider only the particular quadratic
form 3C,.,. = 3(P® + w’Q® — hw) and we choose
a = —ipgin (12). [When linear driving terms are
present other choices for a(f) are needed to exhibit
the exact nature of a subset of the unrestricted set &.]
With this choice for a we are effectively considering
the set & whose vectors are

®ip, ¢] = exp [—i(eP — pQ)/h]®,,  (16)
and the corresponding classical action functional

(15a)

Ie = [ B — o) —Hp, 91 d. (A7)

Consider now the exactness of this action principle.
The quantum evolution of the states in (16) is

‘I>(t) — e—il{}ch‘o./#(p(o)
= exp {—i[g()P — p()Q1/h}e” "= %y, (18)

where
q(t) = ¢(0) cos wt + w 'p(0) sin wt,

p() = —wq(0) sin wt + p(0) cos wi.

It follows from (18) that ®(f) € &, i.e., it is of the
form (16), if and only if ®, is the ground state of
3Ch..., although other eigenstates of 3C,, would
only give phase factors that could easily be absorbed
into «(t). By choosing &, as an eigenstate, the ad-
dition of 3C,, to the Lie algebra of 1, P, and @
can thus be effected without its actual <nclusion,
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again giving rise to an exact “classical” action func-
tional.

Armed with this result, we now observe the inter-
esting conclusion for oscillator Hamiltonians that
an exact “‘classical” theory arises by extremizing
the “classical” action function’s dependence on the
fiductal vector ®, and thus ensuring the eigenstate
property of @; a global extremization further nar-
rows ®, to be the ground state of the oscillator. With
this choice, ®© = 2fiw. The “classical’” Hamilton
Eq. (10) then becomes H,.,. = %(»* + «’¢°) cor-
responding to the preceding form for the harmonic-
oscillator Hamiltonian, 3C.,., in which the zero-
point energy was subtracted off (a physically very
attractive correspondence indeed when generalized
to a Bose field!). Thus, (i) the classical equations
for a harmonic oscillator imply the correct quantum-
mechanical time automorphism, (ii) the spectrum
of the corresponding quantum Hamiltonian begins
at zero, without a zero-point subtraction being
necessary, and (iii) criterion ¥ is evidently satisfied
in (17) by virtue of Euler’s theorem on homogeneous
forms.

The success of the analysis in (18) mainly lay in
being able to commute the evolutionary operator
with the unitary operator in (16) with the only
“cost” being a change of the labels. This situation
will prevail if the evolutionary operator generates a
family of outer automorphisms of the Lie algebra of
1, P, and @, which is only true for a general quad-
ratic Hamiltonian.”

Canonical Transformations and Inexact
“Classical” Action Functionals

While criterion E is necessary to have an exact
“classical’”’ action functional it is not sufficient for
by a suitable choice of @ = a(p, ¢) in (12) and in
(13) we can always satisfy criterion E. In particular,
we could choose a equal to F(q, ¢), a function re-
lated to Hamilton’s characteristic function, chosen
such that p = —9dF/dg and p = 0OF/9q =
H(—08F/dq, g). After such a canonical transforma-
tion, the “classical” action function reads®

Io= [ i - pat,

which clearly fulfills criterion E. The restricted sub-
set of (12) determined by the above rule is an OFS
conveniently labeled by p, q, ®[p, q], in terms of

7J. E. Moyal and M. 8. Bartlett, Proc. Cambridge Phil-
Soc. 45, 545 (1949).

8 See, e.g., H. Goldstein, Classical Mechanics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1950), Chaps. 8 and 9.
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which ¢A(®, d®) = p dq consistent with (7). But
the functional form of Eq. (5)—let alone that of
the more involved relation (4)—would in general
be very different when expressed in terms of the
variables p, q. This difference reflects the fact that
Eqgs. (4) and (5) give to the canonical pair p, ¢
a certain physical significance that may not be
shared by the canonical pair p, q. With this physical
difference recognized, it is clear that the Hamiltonian
p would no longer be the expectation value of an
infinitesimal element that generates an Abelian sub-
group of the set U[p, ¢, o] as (5a) represents. Instead,
p is the expectation value of the Hamiltonian
3¢(P, @) in the state ®[p, q]. If the Hamiltonian
were not one of the linear or quadratic ones we dis-
cussed above, then the action functional would be
inexact even though criterion E were fulfilled. These
results in no way prohibit p and q from being “good”
labels; they simply call our attention to the fact
that (7) has many solutions [including all sets
arising from (12) by the restriction a = a(p, ¢)],
and among these is the solution (3) for variables
p and g having a physical, translational invariance
as is implied by (4).

It is worth emphasizing the basic relation of a
classical canonical transformation to an associated
quantum transformation from our point of view.
To carry out any canonical transformation, we
merely pass from one OFS to another OFS differing
trivially from the first by having different phase
factors; no involved unitary transformation acting
both on operators and vectors is coupled to the
classical canonical transformation. Such unitary
transformations are a separate invariance group of
the quantum theory.

By our definition, an inexact ‘“classical”’ action
functional is one whose associated OFS does not
contain the true quantum-dynamical evolution of
its members. The example above involving p and g
implies that merely changing the labels of the
vectors and introducing phase faetors cannot, in
general, make an inexact action become exact. In
order to conclude that a given ‘“classical” action
functional satisfying criterion E is exact or not re-
quires some additional information regarding the
physical significance of the variables in which it is
expressed. One convenient way to analyze “classical”’
action functionals—and that which we follow in
this and in subsequent sections of this paper—is,
by means of Eq. (1), to express the action functionals
directly in terms of specific labels whose physical
significance is implicitly contained in inner products
such as (4).
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The discussion associated with Eq. (18) has shown
us that an inexact “classical”’ theory will result when
3¢ is neither linear nor quadratic in P and Q. There
is even no choice of ®, that will lead to an exact
theory. However, in the case

% =3P+ V@),

a, suggestive choice for ®, can be put forward that
gives to the ‘“‘classical” theory its conventional form.
For this class of Hamiltonians we find from (10)
that

0 = 3P, PZ@O)
+ (2o, [V@ + @ — V(9]P0) = ¢ + v(q).

Thus ¢(t) is the only dynamical variable on which ©
depends. By choosing &, sharp in @ space about
zero we can make v(g) arbitrarily small. In addition
to Eq. (6), such a ®, satisfies the relation (®,, Q’®,) =
arbitrarily small. The price for reducing v(q) to a
negligible quantity is that now ¢ = (&, P’®,)
becomes arbitrarily large. But we can cancel this
constant by the choice of phase a = ¢t in (13),
thus eliminating © altogether. In summary, if we
(i) choose ¥, arbitrarily sharp in @ space about
zero, and (ii) use a set of states including ®[p, g, cf]
as defined in (12), then we can bring the ‘“‘classical”’
Hamiltonian H(p, ¢) arbitrarily close to the con-
ventional form ip® + V(g) even when i # 0.

Operationally we can argue that the choice of ®,
to make v(q) negligible is a result of extremizing the
“clagsical” action functional with respect to &,,
ag was the case for the harmonic oscillator. In the
present case we simply give priority to those parts
of 0 that do not lead to surface terms.

A further investigation of inexact “classical”
action functionals will be the subject of a separate
study. There we shall consider the relative accuracy
of the approximate vector solution ®[p(t), ¢(£)], where
p and q are solutions of the extremal equations based
on (13), as compared to the true quantum-mechani-
cal solution ®(¢) = exp (—13C/#)P(0). We anticipate
that the approximate solutions will possess some form
of “maximum accuracy”’ compared to the true
solutions when we choose ®, to extremize the
“classical” action functional.

C. Resolution of Unity and Continuous
Representations

While the phase variable « is itself eliminated in
favor of some specific functional form « = a(p, g, 1),
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in general the precise form of the elimination cannot
be made a priors until the Hamiltonian is selected.
It is fitting, therefore, that the resolution of unity
in Eq. (1) of I is most directly found when all «
are included. The completeness of the vectors in &
(a plays no role here, of course) has been demon-
strated by Moyal, and is easily proved by taking
recourse to a Schrodinger representation of Hilbert
space. We wish rather to illustrate the utility of
Theorem 1, which is discussed in I, in deriving the
measure on vectors in & in a resolution of unity.

Quite generally, the resolution of unity in terms
of such vectors will have the form

1=f‘1>[z>,q.a]A(p, ¢,0) dpdqde ®'p, ¢,a]. (193)

Because of the group property in (15a) it is clear
that the Ulp, ¢, a] are also the elements of the
unitary transformation group that leave © in-
variant. It is further clear that they form a transi-
tive permutation group acting in & and in view
of Theorem 1 of I, if A exists, it can be determined
everywhere up to a constant directly from the left-
invariant group measure.’ A simple calculation shows
that A is constant, i.e., the weighting in (19a) is
independent of p, ¢, and a. That the weighting would
be independent of « could have been anticipated
since the elements U0, 0, «] form an invariant sub-
group of the set Ulp, ¢, ] with an additive law of
combination. Further, it is clear that « also disap-
pears from the special integrand ®&' in (19a), so
that the integral over « simply multiplies A by a
factor. It is important that this scaling of A is by
a finite factor, which follows from the periodic
nature of the parameter a. Consequently, the resolu-
tion of unity assumes the form

1= [op, 2% a'p, g, (9b)

the over-all constant being determined, for example,
by the single requirement that the expectation value
of (19b) with &, is one. Although obtained and used
in different ways, Eq. (19b) is a result which agrees
with the solution in reference 5. Thus, while « has
no fundamental dynamical role, it is extremely use-
ful in deducing the resolution of unity (19b) ex-
pressed as an integration over the true dynamical
variables. It is observed that the functional form

¢ The invariant group measure is discussed, e.g., by E. P,
Wigner, Group Theory (Academic Press Inc., New York,
1959), Chap. 10, '
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of the resolution in (19b) is invariant under canonical
transformations.’’

The existence of (19b) as a valid resolution of
unity shows that a representation of Hilbert space
can be realized by a suitable class of phase space
functions. In particular,

@, %) = [ v, 0 B2 40,9,  (20a)

where, according to (19b),

¥, 9 = (2[p, ¢], ).

This definition for ¥(p, ¢) does not lead to a vector
space of arbitrary functions but rather to one com-
posed of continuous functions that fulfill the relation

W', ) = @ [ RG!, o5p, 09D, O dp da.

where X is defined in (4). This restriction on ¢ is
implied by (20a) when we set ¥; = ®[p’, ¢']. Among
the properties required of ¥ is the bound

¥, 91 < [12]],

since ¥ is a unit vector. ,

The preceding representation reduces essentially
to the Fock representation by entire analytic func-
tions' when ®, is chosen as the ground state of an
harmonie oscillator. To see this, let us first reexpress
the vectors in (3) in an equivalent form:

—3 (23 +y?) +z':we(z- iy) A"e— {z+iy) A‘I’o,

®lp, gl =€

where
z = (u/Mlq, y= —Guo/b)p,
A = (Go/B'Q + iGuh)P,

and A* is the adjoint of A. The operator A is the
usual annihilation operator for an oscillator. If &,
is the oscillator ground state, then A®, = 0, and
the related term in the expression for ® will vanish.
Apart from multiplicative normalization factors,
therefore, ®[p, ¢] depends only on z — 4. To

.10 It is worth remarking at this point why we do not con-
sider a set © that includes ®[p] = exp (:pQ)%" for all p. If
this set & is not complete then its utility is severely impaired;
if it is considered complete then a resolution of unity in terms
of these states should exist. Recourse to a Schrodinger repre-
sentation shows that any kernel K(z', z’’) proposed as a
matrix representation of unity fails to satisfy translational
invariance unless & is an eigenvector of the momentum
operator P. Since such eigenvectors do not exist, one would
be forced into resolutions of unity having physieally un-
desirable characteristics.

(1921‘)/'. Bargmann, Commun. Pure Appl. Math. 14, 187

. 12 A related set of normalized states, which depends essen-
tially only on one complex variable, is discussed by J, R,
Klauder, Ann, Phys. (NY) 11, 123 (1960), p. 125,
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eliminate the normalization scale factors, let us
introduce

w = (2[p, ql, ®o);

in view of our choice for &,, w never vanishes. Then

fo, 9 = v (2lp, ¢, ©) = [,

i.e., f is a function of z = z + %y, or stated other-
wise, f is analytic, which furthermore is defined
everywhere. To account for the weight factor w we
have introduced, we must redefine the inner product
(20a) as

dz dy

w

@, ¥ = [ 716 P EE g0, (@)
where |w]® = exp [—(@® + %%)]. These results con-
form with those given by Bargmann.'' In the repre-
sentation associated with (20b), the functions f(z)
need only be entire; in a manner of speaking, the
measure now contains the boundedness property
required of .

Whether or not we choose ®, as above, we wish
to emphasize that Eq. (20) entails a representation
of veclors by phase-space functions as contrasted
with the more conventional representation of
operators by phase-space functions.’”® In the present
formalism, operators are continuous functions of two
phase-space points, e.g., for (202)

&, ¢;p, @ = (3lp, ¢'], B®[p, q)),

and their operation on vectors is effected by inte-
grating ®&y¢ over both p and ¢:

@@, ¢) =) [ 6@, ¢, 9 dp dg ¥(p, 0

[ef. Eqs. (7) and (8) of I]. Equation (9) of I ensures
that the representation of ® is both continuous and
unique.

3. LABELING BY PARAMETERS OF UNITARY
" LIE GROUPS

Let us consider a generalization of the examples
discussed in the last section to the case of an N-
dimensional Lie group of unitary transformations
acting in an n-dimensional Hilbert space. An N-
dimensional Lie group element is characterized by
N parameters, I°, @ = 1,2, --- | N. Elements near
to unity may be generated from N skew-Hermitian
infinitesimal elements L,. The L, are assumed to be
elements of a Lie algebra whose commutator product
satisfies the well-known conditions

13 E. P. Wigner, Phys. Rev. 40, 749 (1932); see also refer-
ences 3-5, and additional references therein.
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[L., L,] = Cszd; (21)

wherein the summation convention for label indices
has been adopted. For the sake of clarity and to
facilitate the comparison with the preceding sec-
tion, we shall assume our labels to be the so-called
“canonical coordinates.”** In terms of these labels,
the finite unitary transformation

V[I*] = exp (I'L,).

The set of states & is now defined to contain all
vectors of the form

®[l’] = V[I°]® = exp (I"L,)®,. (22)

Postulates 1 and 2 of I may be verified by a study
of the quantity

x5 1) = (20], 2[°D, (23)

a continuous function of the single-parameter set

(I'"*-1)°, where the dot denotes group multiplication

in label space. We remark on Postulate 3 of I below.
Considered as a function of time, we let

®(9) = o[I°(9)] = exp [I"(§)La]%o.

By making use of the general operator rule
4B A fl ¢4Be" "4 ds,
0

valid to first order in B, we find that
dd = dP()M;(t)L.8(t), 29

where the numerical coefficients M; are defined
through the relation

1

MWL, = f exp [sI() L 1L, exp [—s()L.]ds. (25)
0

Now let us introduce additional numerical coefli-
cients U? by

Ue()Ls = exp [—I'()L.]L, exp [(HL:].  (26a)

An implicit expression for the label space matrix
U = {U?} is given by

U®) = exp [—(t)ed], (26b)

where ¢, is the matrix formed from the structure
constants whose bd element is c?,. In terms of the
coefficients U?, we have

(1), L.3(1) = U{t)(®o, La®o) = —iU(D)vs/h. (27)

The constants v, are real and characterize the ex-
pectation value of ¢AL,; in the fiducial state ..

1 C. Chevalley, Theory of Lie Groups I (Princeton Uni-
versity Press, Princeton, New Jersey, 1946), Chaps. IV and V.
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Depending on the relative dimensions of N and =,
the constants v, may or may not determine &, up
to a phase factor given an explicit representation of
the infinitesimal elements. At any rate, in terms
of the quantities defined above, the canonical
kinematical form is
(P, d®) = y,(I°) d’, (28)
where
v = M;Ud, (29a)

Adopting a matrix notation once again, we may ex-
press the “vector” y in terms of the “vector” v as

y= [1 = €xp (_laca)](laca)_lvr (ng)

where again c, is the matrix of structure constants.'
The “classical” Hamiltonian is defined by

H) = (3[I°], 3c[l°]). (30a)

In the event that 3C is a linear sum of infinitesimal
elements, i.e., 3¢ = ¢%h°L,, then from (27) we have

H) = U ).. (30b)

In either case, the “classical” action functional
assumes the form

= [ wayr - HENa. @y

The “classical” equations of motion follow from

extremizing (31) with respect to independent varia-
tions in *. These equations are

o (9 _ _L)» _ oH
Ao’ = (al‘ )t = o (32)

A more explicit form for 4., may be found as follows.
The time derivative of (26a) may be expressed with
the aid of (25):

UL, = M3 exp (—'L,)[L., L] exp (I'L,)
= PMLUL,.
This relation is true for all time functions I°(f),
and due to their linear independence and to the

linear independence of the infinitesimal elements
L,, we have

it

oU:/ol = M3cl,U;. (33)
In view of (29a), the partial derivative dy,/dl° is
given by

oM}
al°

aU‘

alc !

Substituting from (33) and antisymmetrizing in ¢
and b we finally obtain

s _
al°

vac + Mb
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An = [aM71/3l° — aMﬁ/al”
+ MMl — (34)

Returning to Eq. (32), we see from the antisym-
metry of 4., that

bcad] Ujp..

¢ b_c —_— — — —— =
I*A 1 laz“ 0,

which expresses the constancy of H if H is not an
explicit function of ¢. If 4., is nonsingular, Eq. (32)
fully determines the solution. Conversely, if 4.,
is singular, the equations of motion do not deter-
mine the solution I°(f) uniquely; furthermore, if the
dimension N of the Lie group is odd, A4 is necessarily
singular. Such was the case for the dynamical ex-
ample involving p, ¢, and « in Sec. 2. But just as
there was a distinguished choice for a(f) for linear
Hamiltonians to make manifest the exact nature of
their action functionals, we find an analogous dis-
tinguished solution for (32) whenever H has the
form (30b), even if A.; is singular. While an explicit
form for this solution I*(¢) is difficult to write down,
it is clearly defined for any ®, through the relation

&(f) = exp (th’Ly) exp [I*(0)L.}®, = exp [I°(¢)L.]®..
(35)

That the time evolution in (35) remains a vector
in &€ is a consequence of the Baker—Hausdorff
theorem, but closed-form solutions are available for
only a few algebras.'® The exact quantum-mechanical
solution (35) is also the extremal solution for (31),
and the evaluation of Iy for this solution vanishes,
thus satisfying criterion E. If in addition the set &,

e., the set of vectors ®[’] at any one time, is
complete, then the “classical’” action principle (31)
is exact.

For exact action functionals, the physical transi-
tion matrix element S to go from one state ¥[I’] € &
at time 0 to another state ®[I'*] € & at time ¢,
has a simple appearance. In particular, from (35),
we see that

S

1

(®[1°], ®[I*(D)])
x(; 1(8)).

Thus for exact action functionals, dynamical transi-
tion amplitudes may be read directly out of (23),
which, in turn, involves only the projection of the
vectors in © on the fiducial state ®,.

When 3C lies outside the Lie algebra, we are
generally led to an inexact “classical’”’ action prin-

]

15 For a recent discussion of this theorem, see: G. H. Weisg
and A, A. Maradudin, J. Math. Phys. 3, 771 (1962),
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ciple. Although the equations derived from such an
action principle have the form shown in (32), they
generally remain inexact for any choice of &,; the
exceptional cases, analogous to 3C,, treated in
Sec. 2, are discussed below. For reasons similar to
those presented in Sec. 2, we may expect to secure
classical equations of “maximum accuracy” if we
choose &, so as to extremize Is. These topics will
be discussed elsewhere.

Consideration of Simplifiable, Enlargable, and
Special Cases

Suppose now that the Lie algebra is simplifiable
in the sense that there exists a choice of infinitesimal
elements such that two or more subsets of elements
are totally unconnected with one another by the
structure constants c’. Then, according to (25)
and (26), both M and U provide admixtures only
within each individual subset. The canonical kine-
matical form becomes a sum of terms, each similar
to that appearing in (28). It is clear that the Hilbert
space in such a case may conveniently be chosen as
a product space, a product over as many spaces
as there are disconnected subsets of the Lie algebra.
If the Hamiltonian is a lnear sum of infinitesimal
elements, then the Hamiltonian part also breaks
up into a sum of terms like (30b), each depending on
the parameters within a subset. Such a Hamiltonian,
therefore, does not mix the dynamics in one product
space with the dynamics in another. The complete
problem is a sum of noninteracting smaller problems,
one for each of the disconnected subsets of the
original Lie algebra.

However, if 3¢ is not simply a linear sum of in-
finitesimal elements, then the Hamiltonian defined
by Eq. (30a) will possess interaction terms, terms
in which the labels from two or more subsets may be
involved. In principle, the Lie algebra could be en-
larged so as to include 3¢ (and generally other
elements as well). In this enlarged algebra, with ad-
ditional parameters, 3¢ is now an infinitesimal ele-
ment and the form in (30b) prevails. Disconnected
subsets may be sought in the enlarged algebra. If
they are found the problem can be reduced to a sum
of simpler noninteracting problems. More specific
statements can be made if the Lie algebra were
semisimple, for then the disconnected subsets would
be a direct sum over simple algebras whose proper-
ties are well known.

A particularly simple dynamics arises for those
labels belonging to elements in the center € of a
Lie algebra, i.e., those infinitesimal elements that
commute with all other infinitesimal elements. If
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L, is such an element, then (25) and (26) state,
respectively, that M; = U; = §;. From (29a) we
see that the contribution to (28) of such elements
is simply a total differential, v, dI’, summed only
over the elements in ©. The contribution of these
terms to the Hamiltonian part is trivial in the
case (30b), i.e., H = h', + (terms involving non-
central labels). Thus, the complete dynamics is
not fully determined, the evolution of the parameters
of the elements in @ being arbitrary; e.g., if we were
to set I’ = R, as suggested by (35), then the ap-
pearance of these variables as well as their energy
shifts would disappear completely. The basic dy-
namical elements in this case lie outside the center €.

It would be possible to use this information re-
garding the time behavior of the parameters of the
elements in € to simplify the ‘‘classical”’ action
functional. Thus, of the possible paths ®[I*(t)], we
might consider only those for which the central
element parameters equal specific time functions
which satisfy their elementary equations of motion
[ = 1’; in the derivation of the “classical” equations
only the remaining variables would be varied. Care
should be taken, however, lest the restricted set of
states with only noncentral element parameters free
to vary fails to span 9.

If, on the other hand, the Hamiltonian is not
simply a linear sum of infinitesimal elements, then
H(I*) defined by (302) may very well depend on the
parameters of those elements in the center. Equations
generated by extremal conditions for central ele-
ment parameters are then constraints, 0 = 8H/dl’,
ie., the parameters relating to the elements in €
enter the Lagrangian at most only in the form of
Lagrange multipliers.

After establishing that the Hamiltonian 3¢ is a
member of the Lie algebra, suppose we further find
that 3C lies in a subalgebra. Then it may be desirable
to simplify the action functional by simply setting
"ty = 0 (or more generally their values for the
identity element) for those infinitesimal elements
outside the subalgebra. Thus, we are restricting our
algebra in such a way that only the subalgebra
containing 3C appears. Such a restriction should be
carried out only if (or should be carried out only to
an extent that) the vectors remaining in & form a
complete set. Otherwise the exact “‘classical’”’ action
principle possible in such a case would be restricted
to apply to an incomplete set, and the dynamies for
an arbitrary state vector could not be predicted.

A special case arises if the Hamiltonian 3C is an
element of a Lie algebra, the remaining elements
of which form an invariant subalgebra, and if 3
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has at least one discrete eigenvalue. In such a case,
the solution (35) is applicable and we express it as

®(t) = exp (tL) exp [I°(0)L,]®Po;

the summation over ‘@’ also includes the element

L,, the infinitesimal element representing 3¢. This
solution may be written in the form

&(f) = exp [I"(t)L.] exp (tL»)%o, (36)
where
()L, = 1°(0)e'“*Lye™***.
From the definition of I% it is clear that
'y = 1%0), (37a)
@) = PO, t];  b,c#h. (37b)

Now choose ®, to be one of the eigenvectors of
3¢, hence also of L, such that exp (tL,)® =
exp (—iwt)®,. Then, apart from a trivial phase
factor (which may be absorbed if one of the ele-
ments L, is, or effectively acts as unity), the solution
(36) has the special form

&(f) = exp [I'(t)L.]®..

According to (37), if we choose I'(0) = 0, then
I"(t) = 0, and furthermore, there is no disturbance
to the remaining labels I°(¢), b ¢ h. Thus by this
choice, all appearance of the Hamiltonian label I*
can be eliminated from &, and if the remaining
vectors in & are a complete set, then the action
functional remains exact. It is just this situation
that occurred for the harmonic-oscillator example
discussed in Sec. 2.

There also may be a simplification in the param-
eterization when certain of the constants v, in (27)
vanish. From Eq. (29a) it is clear that y, will in
general be simpler if some of the v; vanish. We shall
exclude cases where all the constants v; vanish,
since then the canonical kinematical form itself
vanishes. In the elementary example of Sec. 2,
for instance, we chose &, in Eq. (6} so that two out
of three such terms would vanish. The vanishing
of these expectation values was extended even further
to include the Hamiltonian in the case of the har-
monic oscillator.

An even greater simplification of the parameter-
ization may take place if the stronger conditions
L,% = L,® = --- = 0 hold true for a set of
elements {L,,, Lm,, ---} which form a subalgebra.
Let us order our labeling so that L,,m = 1, --- | M
denotes the elements in such a subalgebra, and
L,p=M+1,---,N denotes the remainder of the
elements in the algebra. Then ®[I"] in (22) has the
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special property thatf " =0, p= M+ 1, --- , N,
then ®[I"] = &, independent of the values of the
remaining parameters. This suggests that ®[I°] really
depends not on N variables but only on N — M vari-
ables. Call these independent variablesr®, ¢ = 1, -+,
N — M. Then in general we expect that there is a
many-one mapping of points {* to points r* such that
®[1*] = ®[r°]. The set of points I* mapped onto one
point 7 may be found from

exp (I°L,)®, = exp (I'L,) exp (s"L,,)®,
= exp [["(l’, s™)L,]®.
For fixed I’ the set
w = {I"| "= I'(", s™), s" arbitrary}

is mapped onto a single point whose coordinate
values r° are determined from N — M continuous,
linearly independent set functions: r* = f4(W). It
is important that the L, form a subalgebra in the
above analysis.

The possibility that L,®, = 0 seems to be not an
uncommon circumstance as the following example
shows. Consider the Lie group SU(n), the n-di-
mensional unitary—unimodular group, acting on an
n~dimensional Hilbert space. Without loss of gen-
erality, we can take a representation in which &, is
represented by one in the first row and zero in the
remaining rows. Now there exists a subgroup of
SU(n) that leaves &, invariant, and this subgroup is
clearly isomorphic to SU(n — 1). Thus of the
n® — 1 parameters in SU(n), a number corresponding
to SU(n — 1),ie., (n — 1)® — 1 are totally arbitrary.
This leaves (n”® — 1) — n — 1) +1 =2n — 1
effective parameters to describe ®. While an ex-
pression of these effective parameters in terms of
those of SU(n) is, in general, very complicated, it
is easy to see that the number 2n — 1 is correct,
since, in a complex n-dimensional space, there are
2n real variables needed to describe a vector, less
one to aceount for normalization.

It is worth speculating at this point that an ex-
tension of the analysis of those cases where several
L, annihilate ®, may shed some light on the form
taken in quantum mechanics by classical guage
groups. Although our present analysis is basically
relevant to a finite number of degrees of freedom,
it certainly contains non-Abelian classical e-number
symmetries. Thus, the introduction of infinitely
many similar spaces to describe a field, and the
enlargement of the symmetries to describe locally
variable guages may well clarify the quantum treat-
ment of such questions. We hope to comment on
this possibility in subsequent work.
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An Example

It is clear that one example of the formalism de-
veloped in this section is the one-dimensional prob-
lem treated in Sec. 2. We quote without proof some
results of another application of our general formal-
ism to a two-dimensional Hilbert space. We choose
as infinitesimal elements of our Lie algebra 17g,
where ¢ are the three Pauli spin matrices. A vector
notation will be used throughout to treat the label
indices. The members of the OFS are ®[l] =
exp (3i1-8)®,. The fiducial state is characterized
as in (27) by giving v = (34)(®,, 6®,). In terms of
these quantities, the canonical kinematical form
reads

th(®, d®) = y-dl,
where
y = ("%sinl — I"*)(1.v)1
— I"'sinlv + I7°(1 — cos Dl xv.

Here [ denotes the magnitude of 1. If we choose a
Hamiltonian of the form (3A)h-¢ [ef. Eq. (30b)],
then an exact ‘“classical” action principle results
whose Hamiltonian is

H(l) = cos lth-v)
+ I"*(1 — cos H(h-D(v-1) + ' sin (1 xh-v).

We shall not pursue the resulting equations of
motion, save to remark that the evolution of 1 is
necessarily nonunique since the Lie algebra has odd
dimensionality.

The introduction of new labels other than the
“‘canonical coordinates”’ we have been using cannot
change the physics of a given problem but only its
description. We now wish to point out that quite
different labels give to the preceding example a
much simpler appearance. For this purpose we choose
to label an equivalent OFS by Eulerian angles:
e HU) 60519

[0, ¢, ¥] = [

e*-hw-w)

sin 36
In these variables, the canonical kinematical form
is expressed by

th(®, d®) = (4h) cos Ode + (3R) dy,

and the “classical’”’ Hamiltonian becomes (37i)h-w,
where

w = (gin 6 cos ¢, sin @sin ¢, cos 6).

While the unit vector w appears to be an ordinary
three-vector, the unusual role of (3%) cos 6 as a
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momentum conjugate to ¢ can be shown to infer
the Poisson bracket relation [w,, w,]p.,. = —2w,/k
characteristic of an angular momentum. Thus, spin
degrees of freedom in our formalism have a ‘clas-
sical”’ description of the form but not the inierpre-
tation extensively discussed by Bohm and co-
workers."®

Resolutions of Unity and Continuous
Representations

For completeness, let us make some remarks re-
garding resolutions of unity expressed in terms of
the vectors ®[I°], which we assume to satisfy Post-
ulate 3 of I, i.e., so that the form

1= [ alriera'r) (38)
is true. Since the V[I°] coefficients in (22) form a
group, they are also the elements of the invariance
group G of &. As such they form a transitive group
in which any vector can be transformed into any
other vector in €. When G is compact, the invariant
measure theorem, Theorem 1 of I, assures us that if
(38) is true, we may without loss of generality choose
o0’ as the invariant group measure. Indeed, when the
representation of the V[I°] is irreducible, Schur’s
lemma guarantees (38) for any ®,. If the group g
is not compact, a possible candidate for 81° is still
the (left-) invariant group measure. If the Lie algebra
is simplifiable in our earlier sense, then the resolu-
tion of unity is a product resolution over each of the
product spaces that make up the Hilbert space $.

The assumed validity of (38) gives rise to a
representation of $ by means of continuous label-
space functions. In particular such functions are

(') = (2['], v),
while from (38) the inner product takes the form

W, w) = [ pra)aer).

The functions ¥(I°) representing vectors in Hilbert
space are not arbitrary but must satisfy the pro-
jection identity

W) = [ xae; e,

where X is defined in (23). The solutions to (40)
form a linear vector space and include as special
cases those functions which represent vectors in &.
That is, when ¥ = &["”’], Eq. (40) holds for the
special case ¢¥(I") = &K% ") [cf. Eq. (6) of I].

. 18 See, e.g., D. Bohm, R. Schiller, and J. Tiomno, Nuove
Cimento Suppl. 1, 48 (1955).

(39)

(40)
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Such a constraint on X used in conjunction with
the canonical kinematical form (28) could be help-
ful in deriving X starting purely from the “classical”
theory.

4. LABELING BY VECTOR COMPONENTS

Let us confine our attention initially to an n-
dimensional Hilbert space, but allow any Hermitian
operator to be a potential candidate for the Hamil-
tonian. To ensure that we obtain an exact “classical”
action principle, we shall parameterize and include
all unit vectors in our overcomplete family of states.
For example, the parameters of the Lie group SU(n)
could be used and even arranged so that just one
such parameter was associated with the Hamiltonian.
However, many of the remaining parameters would
be superfluous, and the vectors would be inde-
pendent of them. A symmetric and virtually non-
redundant set of parameters may be introduced
in the following manner.

Let ¥ = ¢y, +++ , ¥, be an n-tuple of complex
numbers lying on the complex n-dimensional unit
sphere S7;

Yl = (41)

Z |‘f’k|2 =
k=1

Then each point in S? corresponds to a unit vector
in Hilbert space and, by means of a suitable mapping
IM: ¢ — ®[Y], we can characterize each unit vector
by a “label” ¢. The inner product of two such vectors
can be expressed as a function of their labels, which
we shall define as

@[], oY) = ¥*¥ = 2 vitvh.  (42)
Postulate 1 of I, regarding the local density of the
vectors in & as well as the completeness aspect
of Postulate 3 of I are trivially fulfilled. The con-
tinuity of the labeling, Postulate 2 of I, is satis-
fied in virtue of the form adopted in (42).

If we now consider vector-valued time functions
we put as before ®(f) = ®[y(/)]. The canonical
kinematical form follows from the differential of

(42) as
(P, dP) = Thy* dy. (43)

The “‘classical” Hamiltonian must be a bilinear
functional in ¢* and ¥ and is of the general form

= (®[y], 1B[Y]) = ¢*icy. (44)

The equations of motion that follow from an action
principle based on (43) and (44) are, as expected,
1k 0¢/0t = 3Cy. Since the solution must remain a
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unit vector in the Hilbert space, it is characterized
by some label ¥, and consequently the “classical”
action functional is exact. This example is one where
the generalized “‘classical” theory, as we have defined
the term, will contain the same physies and very
nearly the same formalism as the quantum me-
chanics. Here the relative term “classical” is inter-
changeable with the term ‘“‘quantum.”

As regards the resolution of unity, we can expect
the following form to hold:

= [ stvldz (V)2 191. (45)

The set © is invariant under any and all unitary
transformations. If we invoke the invariant measure
theorem, Theorem 1 of I, then Schur’s lemma in-
sures that the integral in (45) is in fact necessarily
proportional to the unit matrix. The appropriate
measure on vectors has the symmetric form

a9 = ()50 — T 1wal) T v dvur, 49)

where r and i denote the real and imaginary parts,
respectively.

From (45) there arises a representation of Hilbert-
space vectors by functions of ¥* homogeneous in
the first degree. The inner product of two vectors
is then expressed by

@, %) = [ @X(¥) dn (Wea(),

where

Z 'pln"ln

and v, are n complex coefficients.

w(¥) = (2[¥], ¥) =

Two-Dimensional Space

Consider the case n = 2. Of the four real param-
eters in ¥, and ¥, one may be eliminated by means
of the constraint (41) and another represents an
over-all phase factor which can not be a true dynami-
cal variable. [The over-all phase was useful in
establishing the weight factor (46) in the resolution
of unity, but may now be eliminated.] Thus there
are only two dynamical degrees of freedom. In
order to more clearly display these two degrees of
freedom, we proceed as follows.

Let N be a projection operator with eigenvectors
&, and & such that N&’ = r&“’. We now

define
Ne[y] =

1 = IxHle "™, (47a)
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where x is a complex variable restricted so that
0 < |x|] £ 1, and —a/F is the phase of the projected
component. To fix the phase of x, we set

1 — N)®[y] = xe*"9', (47b)

When expressed in these variables, the canonical
kinematical form becomes

ih(®, d®) = (Gh/2)(x* 3.x) di + da,  (48)

where A §,B = A(8B/dt) — (9A/3t)B. The Hamil-
tonian is clearly a function only of x and x* defined
by

H(x) = (2[¥], 5e2[y]). (49)

The total differential de: will not effect the dynamics,
and may be arbitrarily specified. As an example,
therefore, let us restrict &€ so as to include only
those vectors of the form (47) for which « = 0.
Now that we have restricted our OFS to only those
vectors parameterized by true dynamical degrees
of freedom, the question arises whether there remain
any Hamiltonians for which the ‘““classical”’ action
principle will be exact.

To answer this question we observe that any
vector that we choose as an initial vector will have
a real coefficient of ®’. As time progresses, this
property must be maintained for any choice of x
at ¢ = 0; hence there can be no mixing of (47a)
and (47b) as time passes. The state &’ must
be an eigenvector of the Hamiltonian with eigen-
value zero. Thus the most general solution is 3¢ =
how(l — N), which in turn leads to

H(x) = hox*x. (50)
We see that the “classical” action principle
1= [ GG = b0t (6D

for a single fermion oscillator is an exact action
principle. This conclusion remains true even if w
is an explicit function of ¢{. Furthermore, the inter-
pretation of x follows from (50); as usual, it is
simply a probability amplitude for oscillator ex-
citation.

Generalization to a Fermion Field

An infinite linear sum of action functionals of
the type in (51), each characterizing an independent
fermion oscillator, can be used to describe a fermion
field. So long as the oscillators remain independent,
the over-all action functional will be exact. It
follows, for example, that the conventional Dirac
c-number action functional in the presence of an
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external, fixed c-number source may be considered
as an exact “classical”’ action principle since it may
always be resolved into independent noninteracting
oscillators. If the source is also allowed to respond
dynamically it means, in general, that the “classical”’
action is no longer exact. In either case the “classical”’
action functional arises as a restricted evaluation of
that action, of the general form in Eq. (1), which
leads to the so-called second quantized Schrédinger
equations.”” Thus we find the satisfying result that
the Dirac equations are simply ‘‘classical”’ equations
relative to the second quantized formalism for
fermion fields, exact in the absence of dynamical
interactions, with all the Fermi~Dirac statistics being
correctly included by the limitation 0 < x| < 1
placed on the “classical” amplitude of each inde-
pendent oscillator.

5. SUMMARY

We have focused our attention in this paper on
the relation of quantum and classical dynamics
from the standpoint of continuous-representation
theory and its associated overcomplete families of
states. A study of the elementary examples in Sec. 2
suggested that classical mechanics can already be
viewed as the study of quantum mechanics for a
certain restricted class of vectors if only we reinter-
pret the classical variables as labels for those vectors.
The generalization of this result led to our concept
of “classical” dynamics relative to a set & as the
study of quantum dynamics for unit veectors re-
stricted to the subset &. Such a definition for the
restricted dynamics merits the name “classical”’
since it deals with c-number variables capable of
continuous variation with the aid of conventional
action principle techniques.

In a larger and more abstract sense it should be
recognized that the dynamical variables are in-
variantly characterized as the Hilbert space vectors
themselves, it being expedient to discuss these
vectors by the labels we introduce.

There are several aspects of our formalism and
viewpoint worth noting. Firstly, the construction
and analysis of classical theories becomes at the
same time a partial study of quantum-mechanical
theories. For simple enough systems we have learned
that the classical dynamics is sufficient to infer the
correct quantum dynamics.

17 For further details relating to the evaluation of the
action principle for the relevant restricted set of states, see
J. R. Klauder, Ann. Phys. (NY) 11, 123 (1960), pp. 159 and
160. Many of the formal manipulations in that reference re-
garding the measure on label-space points may be eliminated
by the conventional device of first working in a “box” of finite
volume and later passing to the limit.
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Secondly, we have seen that the appropriate
“classical” theory is dictated once we are given the
subset & of Hilbert space vectors, the labels for
these vectors, and the Hamiltonian. Thus the pos-
gible forms of “classical” action functionals can be
clagsified and catalogued, e.g., in the manner dis-
cussed in Sec. 3. Then, were we confronted with a
specific classical theory, the possible associated
quantum theories and their properties could be
readily determined, at least in principle.

Thirdly, let us reconsider the ‘“process of quantiza-
tion” from our viewpoint. Initially suppose we are
given a classical theory in the form of an action
functional expressed in terms of c-number dynamical
variables. The first step is to reinterpret the classical
variables as vector labels and to view the action
functional as a restricted evaluation of the true
quantum action functional. It is in this step that
the conventional factor-ordering ambiguity, if any,
would show up. For example, given only 3¢(p, ¢)
in Eq. (10) the term © must first be chosen before
the “classical” Hamiltonian H(p, ¢) is determined.
While some of the freedom in © stems from the
arbitrariness in ®,, some may also lie in the factor
ordering in 3C. It is our contention that the proper
choice of the classical Hamiltonian should already
coincide with one of the possible expectation values
H;, the general separation of the classical Hamiltonian
into © and H — 0 is to be regarded as heuristic and
not of fundamental significance. Adopting this point
of view, our first step then neither changes the form
of the classical action functional nor alters the
mathematical properties of the dynamical variables
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(e.g., c-number — operator); it is strictly a re-
interpretation of the physical meaning of the old
c-number variables.

The second step of quantization involves an en-
largement, in one way or another, of the domain of
the action functional so as to infer the true quantum
dynamics. As we have seen, this enlargement need
only proceed to a point where an exact ‘““classical”
action functional arises. Independent of just how
far this domain enlargement proceeds, the process
of quantization, which—as far as the dynamical
formalism is concerned—is entirely contained in this
domain expansion, is seen to involve a smooth and
continuous transition.”® This desirable conceptual
feature, coupled with the universal applicability of
our approach to any dynamical system, and coupled
with the physically desirable correspondence that
eliminates the zero-point field energies, all provide
strong reasons to favor our view of ‘“classical”
theories as simply being restricted quantum theories.

18 An alternate means to pass from a classical to a quantum
theory is by means of the Feynman sum-over-histories, The
analogue of this technique in our formalism has a somewhat
different form than the usual one; it is discussed formally in
general terms gimilar to those of the present paper in J. R.
Klauder, Ann, Phys. (NY) 11, 123 (1960), pp. 142-149, and in
unpublished lecture notes ‘“The Sum-Over-Histories: For-
malism and Some Applications,” University of Bern, Switzer-
land, 1962.

A related formulation of the Schwinger Action Principle
approach to quantum mechanics that is suitable only for
infinite-dimensional Hilbert spaces is discussed in reference 3.
A more general statement of the Schwinger Action Principle
is implicitly contained in our formalism, For example, the
basic kinematical effects are contained in an expression of
3(®[1*'], ®[l%]) in terms of label differentials with the aid of
the formulas in Sec. 3.
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In their theory of thermostatics, Coleman and Noll have obtained a convexity inequality which
places restrictions on admissible stress—strain functions for elastic materials. Here we show that for
an arbitrary elastic material in an arbitrary state of strain F, the general convexity inequality implies
that the modulus of compression k obeys the inequality ¥(F) > %p(F) where p is the mean pressure,
i.e. minus one-third the sum of the principal stresses. Here k is defined to be the derivative of p with
respect to the mass density along a deformation process representing a uniform expansion from the

state F.

INTRODUCTION

N the classical theory of infinitesimal deformations
about a stress-free state of an isotropic elastic
solid, it is usually assumed that the Lamé coeffi-
cients A and p obey inequalities
A3 >0,

>0,

(1a)
(1b)

which state that the modulus of compression k =
A + 24, and the shear modulus p both be positive.
These inequalities are not only intuitively obvious
but also mathematically important, for upon them
rest uniqueness theorems for boundary-value prob-
lems in the classical theory. Yet the ease with which
the physical intuition accepts the inequalities (1)
becomes perplexing when one goes into the matter
deeply. Indeed, the problem of finding the gen-
eralization of (1a) and (1b) applicable to finite
deformations of arbitrary elastic materials appears to
be unsolved. The present article is concerned with
a generalization of (1a).

In their theory of the thermostatics of continuous
media,'** Coleman and Noll have laid down postu-
lates which lead to a general convexity inequality
restricting the form of stress—strain functions for
elastic materials. Here we call that inequality the
TI (Thermostatical Inequality). Consequences of
the TI are known for various types of materials.
In the theory of infinitesimal deformations from a
natural state of an isotropic solid, the TI reduces
to the inequalities (1). All the known consequences
of the TI for finite deformations seem to be in accord
with physical experience in solids.

_*The research reported here was s?ported by the
Air Force Office of Scientific Research under Contract AF
49(638)541.

1B, D. Coleman and W. Noll, Arch. Rational Mech.
Anal. 4, 97 (1959).

2 For alternative presentations and extensions of the
theory, see reference 3.

For elastic fluids (i.e. materials for which the stress
is always a hydrostatic pressure depending only on
the density) the TI is equivalent to the assertions
that the pressure p be positive for each value of the
density p and the modulus of compression p dp(p)/dp
be greater than two-thirds of the pressure®:

p(p) > 0, (2a)
pdp(p)/dp = 3p(p). (2b)

In order for (2a) and (2b) to be sufficient, as well
as necessary, for the TI in fluids it must be under-
stood that equality occurs in (2b) on at most a
nowhere-dense set of values of p; such subtleties do
not interest us here, however.

That the pressure is positive seems to be in accord
with experience. Yet, since there can be, near the
critical point, a range of densities at which the
modulus of compression is less than two-thirds of
the pressure, the T1 does not apply to all fluids in
all circumstances.

The TT is equivalent to a requirement of stability
against homogeneous disturbances at fixed surface
forces. Heuristically, such a requirement appears
appropriate for solids, because it is surface forces
which are controlled in most mechanical measure-
ments on solids. For fluids it is usually the pressure
that is controlled, and the surface forces, instead
of remaining fixed, must then change their direction
to stay normal to the surface and their magnitude
to compensate for alteration in surface area. Thus
we cannot expect the TI to be applicable to fluids,
and it is still an open question whether it is possible
to find a single inequality which yields all thermo-
dynamical restrictions on the local static behavior
of elastic materials, whether they be fluids, solids,
or neither.

Since we believe the TI to be physically applicable

3 B. D. Coleman, Arch. Rational Mech. Anasl. 9, 172 (1962).

1074



A THERMODYNAMICAL LIMITATION ON COMPRESSIBILITY

to solids rather than fluids, we here attempt to derive
from it a generalization of (2b) which is broad enough
to apply to solids; in doing this we obtain a gen-
eralization of (la) meaningful for arbitrary solids,
whether isotropic or not, in arbitrary states of strain.

1. KINEMATICAL PRELIMINARIES

Let X be a material point of a body 8. Let x
be the position in space of X corresponding to some
configuration ® of B which we take to be a reference
configuration. Let y be the position in space of X
for any other configuration €. Keeping € and ®
fixed, as we vary X over B, we obtain different
values of x = x(X) and y = y(X). Since these
values are in one-to-one correspondence we can
regard y as a function of x;

y = y(®). 1.1)

The gradient F of this function,

F = Vy(x) [x-x(X); (1.2)

is called the deformation gradient (at X) of the
configuration € relative to the reference configura-
tion ®. We note that this second-order tensor* F
depends on both €, ® and, in general, the material
point X. Since we assume that y(x) is always a
one-to-one smooth function with a smooth inverse,
F is always an invertible tensor, i.e. has an inverse
F7' such that F7'F = FF™' = I, where I is the
unit tensor. Hence, the determinant of F, det F,
is nonzero.

If pe and ps are the mass densities at X corre-
sponding to the configurations € and ®, then

pe' = |det F| pg'. (1.3)

If F is a proper orthogonal tensor, then we say
that X is rigidly rotated when the configuration of
B is changed from ® to €. If, on the other hand, F
is positive-definite and symmetric, then we say that
X experiences a pure stretch on going from ® to €.

If F, and F, are the deformation gradients, at X,
of @, and @,, respectively, relative to the same fixed
reference configuration ®, then the deformation
gradient, at X, of @, relative to €, is the tensor
F\F;t.

2, THERMOSTATICAL INEQUALITIES

We say that the material at X is an elastic material
if the stress S at X (in the configuration @) is de-
termined by the deformation gradient F at X:

4+ We denote tensors by light face Latin majuscules, re-
serving the symbol X, however, for material points. If the

reader wishes, he may regard symbols such as F' as represent-
ing 3 X 3 matrices of Cartesian components,
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S = §(F). 2.1)

Of course, the form of the function $in (2.1) depends
on the choice of the reference configuration ®.

In general theories of thermostatics it is recognized
that the stress S can depend not only on the de-
formation gradient F, i.e. on the “strain,” but also
on a thermodynamical parameter such as the tem-
perature 6 or the entropy density 5. Our present
formulas and inequalities are to be regarded,
physically, as pertaining to situations in which
either ¢ or % is controlled and held at a fixed value.

The axioms for thermostatics laid down in refer-
ence 1 are shown in reference 3 to yield the following
assertion:

Thermostatical Inequality (TI): Consider the class
€ of smooth curves F, with values in the space of
all invertible tensors F, and let the parameter ¢ for
these curves vary from 0 to 1. Let € be the set
of all curves in € for which F, # F, and F,F;*
is both symmetric and positive-definite. Then, the
following inequality must hold for all curves in ¢’,°

1
po’ f |det F,| tr {F,“S(Ft) d—F‘} dt
o dt

> py |det Fo| tr {F3'8(F)[F, — Fol}. (2.2)

Here tr { } is the trace operation. The integral on
the left is to be interpreted as a line integral along
F,from¢=0tot = 1.

Remark: If we let p, represent the density corre-
sponding to a configuration with deformation gra-
dient F,, then the quantities appearing on each side
of (2.2) represent work, per unit mass, done against
contact forces at a material point X as the local
configuration about X is deformed from one with
deformation gradient F, to one with deformation
gradient F, along the path described by F,. The
quantity on the left in (2.2) gives the ‘“true’”’ work
done, ie. the work done assuming that at each ¢
the contact forces on each material surface at X
are those which one ecalculates using the stress
tensor 8 = 8(F,) and the actual configuration of
the surface at t; the quantity on the right in (2.2),
however, gives the work which would be done along
the path F, if the contact forces were to remain fixed
at their initial values.®! Thus, (2.2) states that §
must be such that contact forces always change in
a process which results in a pure stretch, and, further-

§ In writing (2.2) we have made use of the fact that
8 = §(F) is a symmetric tensor, this enables us to eliminate
the many transpositions which occur in Egs. (1.4) and the
inequality (2.3) of reference 3.

6 Again we note that, when the configuration of a surface
is changing, keeping contact forces fixed is not equivalent to
keeping the stress tensor fixed.
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more, they always change in such a way that the
work done against them is greater than that which
would have been done had they remained fixed.

Let us consider the class € of curves in € which
have the form

P=A4+Bt, 0<tL1,

where A and B are invertible tensors, and are such
that

FOF™ = (4 4+ B)A™

is positive-definite and symmetric. Clearly all the
curves in € are also in €'. Furthermore, for each
curve F{" in ©”, there is another curve Fi” which
can be written in the form

F® = A+ B — Bt,

and which represents F{"’ “traversed in the opposite
sense.” For F®, we have

FPFP = A4+ B)™ = (4 + BA™TY,

which is positive-definite and symmetric if and only
if (4 + B)A™'is. Hence F® isin €”" and thusin ©.
Therefore, it follows from the TI that (2.2) must
continue to hold if F, in (2.2) is replaced by either
F{ or F. On adding the two inequalities so ob-
tained and noting that

0L:t<L1,

a ! a - dr"
P; f det FE| tr (PSS S0t
i)

-1 1 R - dF(2)
- —p; f det FE? | tr {727 s0) T
1]

we obtain the inequality

tT{(F(z)_ - F(l))[Przl)F(_zg 8(F (2))

- p(—ll)F(_ll)S(F(l))]} > 0; (2.3

here we have put

Fo, = F" = A4, Foy = F” = A+ B,
pay = |det Fl pa, P = ldet Fo)| po;
hence,

ps = |det (FPFV7| o', (2.4)

On noticing that F,F;} = (A + B)A™', we see
that the inequality (2.3) must hold for all invertible
tensors F (1, F (2, such that F ,, = F,, and F ,,F 7}
is positive-definite and symmetric.

We call the inequality (2.3) the Weakened Ther-
mostatical Inequality (WTT).

We have just proved that the WTI follows from
the TT; ie., every stress-strain function § com-
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patible with the theory of references 1 and 3 must
obey (2.3) for all F;, and F,, such that F,F )
is positive-definite, symmetric, and 1.

Remark: The converse of the above result is not
true: the WTI does not imply the TI. This is not
surprising; for the TI asserts that (2.2) must hold
for all curves in €', while in proving the WTI we
used only the assertion that (2.2) hold for straight
lines in €.

In the rest of this article we assume the WTI as
an axiom. Hence all the propositions we prove are
consequences of the TT.

3. MEAN PRESSURE
If S has the form
S = —pl, (3.1)

then we say that the stress is a hydrostatic pressure.
If, for some F, S = $(F) does not have the form
(3.1), S can still be uniquely decomposed into a
pressure part —pI and a deviator T as follows:

S = 8F) = —p(F) + T(F); (3.2)
here 5(F) is defined by
pF) = —5tr 8(F), 3.3)

and is called the mean pressure. It follows from Egs.
(3.2) and (3.3) that

tr T(F) = 0. (3.4)

We now prove

Proposition 1: For all elastic materials, the mean
pressure p(F), defined in (3.3), has the property
that for each F, »’5(»F) is strictly decreasing in »
for all v > 0.

Proof: We use the WTI, putting F,, = vo,F
and F(z) = V(z)F, with V) # V(2), Y1) > 0, V() > 0.
Since F(l) # F(z) and F(z)F(;i . (V(z)/V(l))I is
positive-definite and symmetrie, (2.3) holds and may
be written in the form
tr (v — vay)[p@r @ S@.F)

- P(_liV(;:S(V(l)F)” > 0. (3.5)

By definition,

tr S, F) = —3pveyF), tr oo, F) = —3pvo F),
(3.6)
and by (2.4) we have
P<_2} = |det (IV(2>/V(1))| PG}:
ie.
par/ Py = G /rar)’. 3.7
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Hence, (3.6) yields the inequality
— (o — ) Pop@eF) — vipva,F)] > 0.

In other words, whenever we have vy > v, we
must have

VDo F) < v F), Q.E.D.
4. MODULUS OF COMPRESSION
Let us now consider the quantity k(F) defined by
KF) = —(3/30)p(F)| amr- 4.1)

It follows from (1.3) that if F is the deformation
gradient of € relative to ® then F can be written
in the form

F = H(ps/pe)’, (4.2a)
where H is unimodular, i.e.,
det H = 1. (4.2b)
Equations (4.1) and (4.2) yield
K(F) = pe 9p(H(ps/p))/3p|s-pe- 4.3)

In other words, k(F) is a modulus of compression.
It gives the ratio p d5/0p of the increment dp in
mean pressure to the relative increment dp/p in
density required to effect a small uniform expansion
from the state of strain characterized by F.

Proposition 2: For all elastic materials and for
all deformation gradients F,

k(F) = 3p(F). “4

Proof: By Proposition 1, for each F, of(aF)
is a strictly decreasing function of a! for ot > 0,
hence it is a strictly decreasing function of « for
a > 0, and

0 > (3/90)e*p@F)]|o -
= 3o p'F) + o} (9/0c)p(o! F)]aer.  (4.5)

70Of course, a small uniform expansion will, in general,
cause a change dT in T as well as a change dp in p, but the
change in T does not interest us here.
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On substituting the definition (4.1) into (4.5) we
obtain (4.4) immediately, Q.E.D.

Special Cases

Undistorted states of general isotropic materials:
If F describes an undistorted configuration of an
isotropic material, then $(¥) is a hydrostatic pres-
sure which we can denote by —prI. Let F’ be the
deformation gradient of another configuration of the
isotropic material. Then the classical infinitesimal
strain tensor, E, measuring the “strain’ on going
from F to F’, is given by the symmetric part of
F'F?' — I

H=FF'—-1,
E = ¥H + H").

(4.6a)
(4.6b)

If F’ is “close to”’ F, then, to within terms of order
one in the norm of H, $(F’) is given by

S(F') > —ppl + Np(tr E) + 2u.E. 4.7)

Here A\r and ur, called Lamé coefficients, are scalars
depending on F (and thus on pr). In classical
elasticity theory, it is shown that the quantity
Ar + Zur is the modulus of compressibility for the
state F, i.e. A\r 4+ 3up is equal to our k(F). Hence,
for undistorted states F in isotropic materials,
Proposition 2 yields

Ar %P'F > %pﬂ- (4-8)

We believe that in physical applications this in-
equality should be found to hold for all isotropic
elastic solids.

If the undistorted configuration described by F
is stress-free, then pr = 0, and (4.8) yields the
classical inequality (1a) with, of course, > weakened
to >.

Fluids: An elastic fluid is a special isotropic
material for which § = —p(p)I for all F, and k =
p dp/dp. Hence, for such a material, (4.4) is equiv-
alent to (2b).
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A number of one- and two-dimensional Ising lattice systems with long-range ferromagnetic inter-
actions are studied. The theory introduces as basic variables stochastic fields acting at each site, but
goes beyond Weiss mean-field theory (or the Bragg—~Williams approximation) in giving a complete ac-
count of the statistics of these fields. A transition is manifest in these systems by a shift in the values of
the stochastic fields which are important for the calculation of the partition function. Particular atten-
tion is devoted to the critical region where the range of significant stochastic fields broadens. The
equation of state for the lattice gas corresponding to this model is of the van der Waals type. Com-
parison is frequently made between these results and the properties of an analogous one-dimensional
continuum system studied by Kac, Uhlenbeck, and Hemmer.

1. INTRODUCTION

ECENTLY, a method of evaluating the classical
partition function has been suggested.' Basi-
cally, the partition function is expressed as an aver-
age over a set of stochastic fields acting on the par-
ticles as a result of intermolecular interactions. A
general formulation of the procedure becomes tract-
able for the case of a one-dimensional system with
exponential attraction, since then the stochastic
processes involved are Markoffian. Explicitly, the
theory has been developed for a one-dimensional
continuum system of hard rods attracting each other
with the potential »(z) = —ay exp (—v |z|) and
for a one-dimensional lattice model with pairwise
site interaction — Jyuwur, exp (—y [k — %']), with
u = =1,

For a finite value of the interaction range param-
eter, v, the one-dimensional continuum model ex-
hibits no phase transition, as expected. In the limit
as v — 0, Kac, Uhlenbeck, and Hemmer’ have
demonstrated that the equation of state in the one-
phase region becomes the van der Waals equation.
However, Maxwell tie lines appear explicitly in the
two-phase region, rather than the van der Waals
loops. In subsequent works, discussions of the pair
correlation function® and of ecritical phenomena*
have been presented.

! M. Kac, Phys. Fluids 2, 8 (1959). A brief review and
ualitative discussion is given in E. Helfand, Ann. Rev. Phys.
hem. 14, (1963) (to be published). Reference is there made

to the related lines of development being pursued by A. J. F.
Siegert and by G. A. Baker, Jr., as well as to various quantum
statistical applications.

? M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math.
Phys. 4, 216 (1963).

3 G. E. Uhlenbeck, P. C. Hemmer, and M. Kae, J. Math.
Phys. 4, 229 (1963).

P. C. Hemmer, M. Kac, and G. E. Uhlenbeck, J. Math.
Phys. (to be published).

The properties of the lattice systems to be studied
in this paper are closely related to the above men-
tioned continuum system. An added degree of sim-
plicitly is achieved due to the nearly trivial nature
of the short-range force of the lattice model. Thereby
a more concise form of the mathematical develop-
ment is possible. In Sec. 2, the general structure of
the theory will be reviewed. A somewhat detailed
treatment of the one-dimensional field-free Ising
model with infinite-range exponential attraction is
presented in order to expound the essential features
of such systems. A transition occurs at the Weiss—
Bragg-Williams transition point. The transition is
manifest by nonzero stochastic fields (although
equally likely positive as negative) making im-
portant contributions to the partition function.
The lattice gas with this interaction (corresponding
to the ferromagnet in a field) again has a van-der-
Waals-like equation of state. Of particular interest
are some unusual features of the system in the
region of the critical point. The pair correlation is
also studied and found to be similar to the long-
range part of the continuum gas correlation function.

The methods employed for the linear array lean
heavily on the Markoffian nature of the probability
process involved in the functional integration. Mark-
off processes are fundamentally one-dimensional, so
the question arises as to how these techniques may
be adopted for the treatment of two-dimensional
problems. Such systems are of interest since phase
transitions occur even for finite-range potentials.
Several such planar problems are discussed in
Secs. 6-9. These systems involve potentials which
are products of two functions, one dependent on the
row distance, and the other on the column distance.
Mathematically, the treatment involves considera-
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tion of a multidimensional functional integral; i.e.,
a stochastic field variable is introduced for each
row. This leads to collective effects among the
stochastic fields in different rows. The properties of
the two-dimensional systems are not qualitatively
different from the one-dimensional systems when the
interaction is long range in at least one direction
(cf. Baker®).

2, GENERAL THEORY

The configuration probability distribution fune-
tion of classical statistical mechanics may be viewed
as a multidimensional Gaussian function. For ex-
ample, for the Ising problem with general pair inter-
action p;uw(jK) between the jth and kth site, the

probability of the configuration {u} == uy, ps, -« -, uw,
where p; = %1, is
N
Py = exp |:'_% kZ: #iﬂkv(jk)jl/QNy 2.1
N
Qv = ; exp [—%B ;Y:' u,-ukv(ik):l 2.2

(prime on Y denotes j ¥ k). It is perhaps not
surprising that mathematical techniques from the
theory of probability, where Gaussian forms have
long been of importance, are of value in the problem
of evaluating the partition function. Thus, one has
the mathematical identity

N
Qv = X exp [—%ﬁ > u,-pkvom]

1 1

N
= {IZ,: exp I:B’ kZ; X(k)uk]} exp [FNG(0)], (2.3)
e =
where the functional integration,’ or expectation
value, E{ }, is to be taken over the Gaussian random
process X (k), characterized by the mean

E{Xk)} =0, 24

and covariance

E{X(X®)} = —u(k), 2.5)

provided, of course, that such a process exists.

The partition function, aside from the expectation
operation, has a form similar to that for a set of
independent particles in an external field —g*X (k).
In this sense the theory is much like Weiss mean-
field theory (or Bragg-Williams theory), except that

¢ G. A. Baker, Jr.,, Phys. Rev. 130, 1406 (1963).

¢ I. M. Gel'fand and A. M. Yaglom, Usp. Mat. Nauk 11,
77 (1956), [English translation: J. Math. Phys. 1, 48 (1960)];
8. G. Brush, Rev. Mod. Phys. 33, 79 (1961); M. Kac, Proba-
bility and Related Topics tn Physical Sciences (Interscience
Publishers, Inc., New York, 1959), Chap. IV.
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now with proper account of the stochastic field,
exact results may be retrieved. The summation over
{1} may be performed for this set of ‘“‘independent”
particles:

N

Qy = E{H cosh B*X(k)}2” exp [ANBv(0)]. (2.6)
k=1

All the difficulty now resides in performing the

functional integration.

There are several routes along which one may
proceed. Various iteration procedures lead to the
equivalent of diagram expansions. Rather than
pursue this tack, we will continue along lines
previously employed," and consider a class of
problems such that the Gaussian random process
X (k) is Markoffian. This is the case if the system is
one-dimensional and the intermolecular potential is
an exponential;

v(kk’) = —Jy exp (—v [k — k). 2.7
In this case, the X process, with covariance
E{X()X(k)} = exp (—v [k — k') (2.8

(the constants of the potential are conveniently
absorbed into X), is an Ornstein—Uhlenbeck process,”’
first studied in connection with the theory of
Brownian motion. As has been shown,' the evalua-
tion of the expectation value involved in the partition
function is equivalent to the determination of the
highest eigenvalue of an operator. This becomes
apparent upon explicitly writing

B{ T cosh (om0}
= [ [ I coth o

X W(z)P(z, | x2, )P, | 25, 7)

dev (2~9)
where a reduced inverse temperature » = 8J has
been defined, and the Markoffian joint distribution

has been written as a chain of pair distributions.
The singlet probability distribution is

o+ Py |, 7) day -

W(z) = 2m)~* exp (—2”), (2.10)
and the pair distribution is
P |z, v = 2e(l — ™))}
X exp [— (@ — ze"")*/2(1 — ¢”*")]. (2.11)

Chain integrals of the type appearing in Eq. (2.9)

7 G. E. Uhlenbeck and L. S. Orstein, Phys, Rev. 36, 823
(1930).
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may be viewed as operator multiplications in co-
ordinate representation. Thus, consider an integral
operator with kernel

K(x|a',v) = cosh? [(m)'2]S(z | 2/, %) cosh? [) 2],
2.12)

8@ |z, ) = W@)P | o', v/ W@&W@)P. 2.13)

The eigenvalues of the Kac equation

[ K@ |2, ele) d = o), @19

which we label A, > A\, > A, --- , correspond to
orthonormal eigenfunctions ¢o, ¢, - - - . It has been
previously shown that these eigenfunctions may be
employed as a basis allowing one to write for the
partition function

QN=

2 N AT,

i=0

(2.15)
where

4, = [ W) cosht [emieloite) da.

(2.16)

In the thermodynamic limit of N — « only the
largest eigenvalue contributes to the sum (2.15) and
we obtain as an expression for the partition function

lim QYY = 27 "),. (2.17)

N—ow

3. ONE-DIMENSIONAL FERROMAGNET

Recalling the relation of the Ornstein—Uhlenbeck
process to the Fokker-Planck equation,” one may
easily show that S(z | y, v) is the fundamental
solution to the equation

{9/0y — [(8/82") — §" + 31} 8(x | y, ) =0,
subject to the initial condition

S|y, 0 =z — 9.
Therefore S may be formally written as
S@ 1y, v) = exp {v[(8°/02") — 3" + 31} 8(= —(3.1/;)

Representation of the kernel in terms of the Dirac 6
function will be of particular value in simplifying
the lattice problems considered in this paper. This
representation does not appear to be of comparable
value in the continuum problems previously studied.

By employing the & function, one may write the
Kac equation (2.14) as

exp {} log cosh [m)*e]} exp {¥[(@/da") — $2°])
X exp {} log cosh [(m)'z]}e(x) = N Pe(z). (3.4)

(3.1)

(3.2)

E. HELFAND

If the exponentials could be combined into a single
operator, the problem would be considerably simpli-
fied. Series rules for this combination will prove
to be useful for the long-range force, ie., v — 0
limit, wherein our interests lie.

The basic theorems for the combination of expo-
nentials of operators are due to Baker and Haus-
dorff.® They enable us to write

(o4
e'e® = ¢f,

(3.5)
with
C = A+ B+ 3[4, Bl + 13[4, [4, B]]

— 12[B, [4, B]] — 4[4, [B, [4, B]]]

+ commutators involving 5 or more A’s and B’s.
(3.6)

The Baker-Hausdorff method of determining higher
terms is iterative, while the form resulting from Lie
algebra® is not very compact. For our purposes, we
are interested in the variant

e*Pee!® = exp {A + B + 1[4, [4, B]]
+ 9%[B, [4,B]l + ---}. (3.7

For a general v, each term of the series on the
right-hand side might be important and this ap-
proach may not be the most expedient. For small
v, however, the operators y[(d’/dz*) — 21z°] and
log cosh [(»y)!z] may be regarded as commuting
since

Y{(@ /dz®) — }a°}, log cosh {(m)'z}]
= —2vy% tanh [(ry)iz] d/dx
— vy’ sech® [(vy)iz]. (3.8)

For phenomena involving z and variations of z of
0(1) this term is of O(y"), which is smaller than the
O(y) contributions of the individual operators.
Other cases will be considered below, but for all
of them, this commutator, and to an even greater
extent, higher-order commutators, are negligible.
Interest may therefore be centered on the eigen-
value problem

{—(d*/dz”) + %2°
— 77" log cosh [e)!z]}e(z) = xe(2),
Ao =

(3.9)
exp [y(z — xo), (3.10)
where «, is the lowest eigenvalue. The analogy to
7718 (?96121) Weiss and A. A. Maradudin, J. Math. Phys. 3,

® N. Jacobson, Lie Algebra (Interscience Publishers, Inc.,
New York, 1962).
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the problem of determining the ground-state energy
of a particle in the external potential

Uz) = 1z* — v~ log cosh [(y)iz] (3.11)

will enable us to use the familiar concepts of quantum
mechanics in discussing the solution of Eq. (3.9).
For sufficiently low » (high temperature), the log cosh
function may be expanded to

2 2 4

log cosh [y)ix] = Lvya® — &v*y’a’, (3.12)

and to lowest order in v, the equation is (the har-
monic oscillator)

{—(@/d2") + 101 — )2’} = ko,  (3.13)
with eigenvalues
K=0=-2'G+9%, j=012, -, (314
and eigenfunctions, the Weber functions,
¢ = (1 = 2)4/2w'nl}}

X exp [~1(1 — 2)%°1H,[(1 — 2)4], (3.15)

where H; is the jth Hermite polynomial.
Taking j = 0 for the smallest x, we obtain the
partition function

.1
){,112 N log @y = log 2

+ 3l - - @ -2+ . (3.16)

The lowest-order term, log 2, is the entropy term
obtained for a system of free spins; thus, for tem-
peratures above any transition, the properties of
the system become ideal as v vanishes.

It is clear that some modification of the procedure
must be made for » > 1, since the coefficient of 2
then becomes negative and the oscillator would
undergo unbounded motion, at which point the
MacLaurin expansion of log cosh is mnot valid.
Equation (3.9) always has bound states, since for
large |z!, the term v~* log cosh [(»y)¥] behaves as
|z| and the +21z® dominates. The situation may be
viewed as follows: At the origin there is a competi-
tion between +1z” and the —2ivx® of the log cosh
term to determine whether U(z) starts out with
positive or negative curvature. For » > %, the U
function starts with a parabolic well in which the
ground state is contained; i.e., the function ¢, does
not spread out far enough to feel the higher-order
terms of log cosh. On the other hand, for v < 1,
the U curve turns down at the origin, but since it
rises as }z° eventually, there must be two minima.
The extrema of U are given by

U'(z,) = %z, — vy tanh [y)iz,] = 0. (3.17)
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To keep contact with the notation of Kae, Uhlen-
beck, and Hemmer,® let z, = 2}7%. Condition
(3.17) becomes

tanh [(2)9] = (20) 1y. (3.18)
One solution is always 1 = 0, but examining
U"@/v) = § — vsech® [()}9),  (3.19)

it is evident that for » > 3, zero corresponds to a
maximum. At » = 1, two nonzero solutions of equal
magnitude and opposite sign appear for condition
(3.18). These represent the absolute minima. For
(1 — 2») = 0(1), these minima are of distance
O(y™Y) from the origin and are of depth O(y™%).
Therefore, the eigenfunctions may be constructed
out of functions contained in each well. Let us ex-
pand U about the minimum, introducing the vari-
able w = z — 5(2/4Y):

Uw + 2%7*n) = 7" log cosh [(2)}] — 3v7'7"
— Lw*{1 — 2sech® [(2)in]} + -+,  (3.20)

where the next-order anharmonic term is of order v*.
The validity of neglecting the commutator (3.8)
should also be confirmed. For w = 0O(1), the com-
mutator is O(y!) compared to the parts of the
operator up to O(y) which are retained. Therefore
for temperatures below the critical, given by v, = 1,
the eigenvalue equation is

[—(@/dw’) + Fw*{l — 2 sech® [(2)}9]}]e
= {k — v log cosh [2)}n] + 3v 7' }e,

which is identical in form to the previous Eq. (3.13),
with

3.21)

vsech® [(20)¥n] = » — 4¢* replacing »,
and

x — v log cosh [(2)in] + 3o

2

=x+ 3 log (1 — $7'n") + v 7'’ replacing «.

Note that only even functions of 7 enter so that
the result is independent of whether one takes the
¢ function centered about the positive or negative 7,
or a linear combination. We return to this point
later.

The partition function is, therefore,
lim N 'InQy = In 2 — 44" + log cosh [(Zv)tn]

N—ooo
— 3y[l —» + {1 — 2vsech’ (@)1} + -,
=In2~3%—3log(l — »'y)

— Wl =y + A =22+ DN+ - (3.22)
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i.e., the long-range force has produced a collective
effect on the partition function which is of O(1).
Note that this form for Qy also covers temperatures
above the transition point when one substitutes the
appropriate 7 = 0. From the first equation of (3.22),
it follows that the choice of 4 minimizes the free
energy to O(y°), as in Bragg—Williams theory.

The system is ideal above T,. The transition is
second-order with a finite discontinuity in the
specific heat of 3k per particle. The O(y) term of
the energy begins to grow as v(T — T.)™}, as the
critical point is approached, but as we shall see
below, never actually diverges. The transition oceurs
at the temperature predicted by the Weiss mean-
field (Bragg-Williams) theory,

1= —(1/kT.) > v(j) = 2J/kT..

f=—

#i

(3.23)

The region of the critical temperature deserves
special attention, since at » = v, there is a vanishing
of the quadratic term of the “potential” U which
determines the range of the local stochastic fields
which make important contributions to the partition
function. The quartic term must then be retained.
Qualitatively, the effects on the differential equation
of having a flatter well is that larger values of z
(larger stochastic fields) become important for the
ground state. The results which follow are closely re-
lated to those which have been expounded for the
continuum problem by Kac, Hemmer, and Uhlen-
beck.*

With the quartic term of the expansion of log
cosh, the eigenvalue equation (3.9) becomes

[—(@/d2") + »d + 192'le = v 74

kY v, (3.24)

where z = zy %7} and the new temperature variable
W% ™**(1 — 2v) measures deviations from
the critical temperature. For (1 — 2») = O(y}),
all the terms are of O(1) when z variations are O(1).
Exactly at the critical temperature, « is related
to the lowest eigenvalue, ¢, of the equation

[(@/d2") — 152'le = op. (3.25)

For temperatures just above the critical, 0 < », K 1,
the quadratic term may be treated by perturbation
theory. While a pair of minima do develop im-
mediately below the transition temperature, they
are not separated by a barrier of sufficient height
or width to permit one to speak of a distinct eigen-
function in each region. Thus for 0 > », > —1,
perturbation theory may still be employed. For
[a] = O(1), the full Eq. (3.24) must be studied.
Apparently, it is necessary to speak of a transition

nw =
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temperature interval of O(y!). However, ¥ must
vanish, and along with it this interval, in order to
achieve any transition for the one-dimensional
system.

We noted earlier that a term of the form
v(T — T.)7} occurs in the energy as T — T, but
outside the v region. Thus, the largest this term
could get before the considerations of the last few
paragraphs must be used is vy = 4!, When the
perturbation theory described above is employed,
the energy goes smoothly from one to two phases.

4. THE LATTICE GAS

Rather than going on to a discussion of the
properties of the ferromagnet in the presence of a
magnetic field, let us study the corresponding
properties of the lattice gas. This will enable us to
make contact with the continuum gas results of Kac,
Uhlenbeck, and Hemmer.”

Consider a system of N sites, each of which
is either singly occupied (u; = +1) or vacant
(#; = —1). The interaction between particles on
sites ¢ and j is again —ay exp [—v | — j|] so that
the Hamiltonian is

N

—day X 3w + 1)

fak=

Hiu} =

e + Veexp [y [j — k[l. (4.1
The grand partition function in the limit N — « is

Gre, T) = X 254%™ exp [—BH {u}]

= 2" exp (NI /(L — ¢7) ~ 3]}
X 2 exp by 2 mme "M + ¢ Xl 42

{») ik

where
v=1Ba and {=3iInz+ [2y¢ /1 —e )]

(When ¢ is interpreted as an external field divided
by kT, this grand partition function is proportional
to the partition function of the ferromagnet in field.)
If the same stochastic process as was employed in
the previous section is introduced, then

Gy = 22" exp (»N[e"/(1 — €7) — 3]}

X Ef I;I cosh [(W*X(k) + ¢1}; 4.3

or, in the limit as v — 0,
Gy = 22" exp PN — 7N + 17N — veol], (4.4)
where «, is the smallest eigenvalue of

[—(@/dz") + Uz, Dl = xp (4.5)
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Uz, §) = 12 — v log cosh [)'z + {1, (4.6)

The eigenfunctions center about the minima of U,
z, = 2%y, where 75 is now given by

(2)™*y = tanh @)}y + {]. @7

At high temperatures only one solution exists. As
the temperature is lowered, a second, but higher,
well develops. This temperature represents not the
phase transition, but the limit of metastability of
the phase corresponding to the second well. For finite
¢ the flattening of the U curve, such as lead to the
critical region, occurs only where the metastable
state is developing, and thus has no physical sig-
nificance.

Next consider, for some temperature below the
critical, the effect of varying ¢. For large ¢ there
is again only one solution to Eq. (4.7), i.e., one well
of U. As ¢ is lowered, a second, but higher, well
develops. At ¢ = 0 the eigenvalues in the two wells
are equal, and there are coexisting phases. As ¢
is lowered further, the original phase now corre-
sponds to the higher well and therefore can be
thought of only in a metastable sense.

In terms of 5, the grand partition function is
quite close to the partition function of the field-free
ferromagnet:

lim (1/ N InGy=8p =24+ %Inz

N

+r+ 31 —»—-3nd — 7/

— " —h -2+ . (48
One may deduce from this the density in the one-

phase region,

p =131 + @) + 0(), 4.9)

or

z=1¢"(o/1 — p) + O(). (4.10)

The equation of state in the one-phase region is

P+ ap’ =p, + 0G). (411

where p, is the equation of state of a gas interacting
only with the short-range force; in this case,

Bp, = In [1/(1 — p)]. (4.12)

Such van der Waals-like equations of state are to
be expected for a long-range interaction, according
to the derivation of van der Waals, arguments
based on the virial theorem, or diagrammatic
considerations.

In the two-phase region, the pressure is main-
tained constant as a result of the degeneracy of the
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Kac equation. The theory here so closely parallels
that of the continuum gas,’ that presentation again
is unnecessary.

5. PAIR CORRELATION FUNCTION

The pair correlation function is a measure of the
order imposed on the system as a result of the inter-
actions. For those facts which we wish to develop
here, let us return to the ferromagnetic model. The
techniques outlined above are easily adopted to the
calculation of

f(8) = (“l#t+t>

= Q?;] ; Myt €XP [%—v'y Z' #;Mi6_7li_fl]
= 2V Vg {ta,nh [(VY)QX(l)] tanh [(V‘Y)éX(l + )]

X g cosh [(w)*X(k)]}. (5.1)

The expectation value may again be evaluated by
going to a basis in which the kernel K is diagonal,
viz., the eigenfunctions of the Kac equation (2.14).
For notational simplicity, introduce the scalar
product (¢, ¥) = [ o(z)¥(z) dz. We then have, for
the expectation value in Eq. (5.1),

Ef---} = (W) cosh? [Gy)}z], @)ns™
X [,Z::; (¢o tanh [(py)iz], ©:)\i(e;, tanh [(Vy)*x]%)]

X X~ " (po, cosh? () 2] (). (5.2)

Under the assumption that [ and I 4 ¢ are far from
the ends of the chain, only the highest eigenvalue,
Ao, has been retained in the first and last terms of
the product. Because ¢ is finite, however, all eigen-
values must be retained in the middle part of the
product.

Inserting (5.2) and (2.17) for Qy into (5.1) yields

) = Z; (Ai/Mo) (o, tanh [Gm)izle)*.  (5.3)

A form more closely related to the continuum result?®
is obtained by considering the generating function
[define f(0) = 1]

FO) = X 10

=% [ [ dy o) tash e

X R(z, y; Ao/2)-tanh [0 yle(),  (5.5)
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where

B y,9) = 2 oo/ =2)  (.6)
is the resolvent kernel of K(z, y).

For the field-free ferromagnet, only the j = 1
term contributes to lowest order in . This yields,
in the one-phase region,

@) = bv/( = 29" exp [—vi(1 — )%,

which generalizes when a field is present, or for the
lattice gas, to

@) = (i = @) — W)
= {m[l — (/2] /A — 2 + 1)}
X exp [—vi(l — 2» + M.

These results are identical, when appropriate trans-
lation is made, with the long-range part of the con-
tinuum fluid correlations [cf. Eq. (56) of reference 3].

In the two-phase region, the pair correlation is a
linear combination, weighted by the volume fractions
of each phase, of the correlation functions ap-
propriate to each of the phases. This is based on
precisely the same argument as was used for the
continuum problem.’

As the critical temperature is approached, the
more complicated eigenvalues and eigenfunctions of
Eq. (3.24) [or (3.25) precisely at the critical point]
must be employed. Again the j = 1 term is dominant
but all odd j's contribute, even to O(y). Some idea
of the magnitude may be of value. At T = T,

() = v**[0.656 exp (—0.754y"*1)
+ 0.0019 exp (—2.91y*%1)
4+ 0.00006 exp (—5.6v%) + ---].

(6.7

5.8

(5.9

6. TWO-DIMENSIONAL PROBLEMS

For one-dimensional systems with no singularities
in the potential (other than the core for the con-
tinuum problems), it is necessary that the limit of
infinite interaction range be taken in order to obtain
a phase transition. On the other hand, two-dimen-
sional systems already exhibit phase transitions with
finite interaction ranges. Thus, it is of interest to
consider a number of two-dimensional systems which
may be analyzed in a fashion similar to that so far
employed. The formalism at the beginning of Sec. 2
was not specific as to dimensions. Only when the
system was chosen to yield a simple Markoff process
was the specialization to one dimension made, since

E. HELFAND

a Markoff process implies an ordering which can
only be achieved in one dimension.

For a two-dimensional square lattice we shall now
show that by introducing a set of Markoff processes,
essentially one for each row, the techniques of the
previous sections carry over. Again it will be neces-
sary to postulate a special type of intersite inter-
action, viz., one which may be written as a product
of a function of the horizontal separation and a
function of the vertical separation. Systems of this
category to be discussed are:

(A) A particle interacts with other particles in
its row and the rows immediately above and below
according to the exponential law

—J'ye_7|k—kll, V o= l,
ol K1) = y—7Jye " V=141, (6.1)
0, otherwise.

The system is periodic in the rows .

(B) A particle interacts with other particles in
its row exponentially, and with the particle im-
mediately above and below it:

—Jye T = ]
okl ') = 3 —1J, V=131, k' =1k,
0, otherwise. 6.2)

(C) A particle interacts with other particles with
a potential which is an exponential of the distance
between the two measured along the lattice bonds

o(kl, B'0)
= —Jy exp [—v(k — K|+ 1 - VD] (8.3)

Note the necessity of introducing a prefactor of y*
to keep the total energy finite.

(D) Nearest-neighbor interactions, which shall be
shown to be a special case of (A), (B), or (C).

Mathematically, model (A) is the simplest. We
shall therefore devote our greatest attention to its
study. The other interactions will be analyzed to
the extent necessary to make clear the lines along
which one should proceed, and to bring out charac-
teristic properties. Since most of the salient features
are already evident for the field free ferromagnet,
we will concentrate mostly on this problem.

7. TWO-DIMENSIONAL SQUARE LATTICE SYSTEM
WITH EXPONENTIAL INTERACTION ALONG A ROW
AND THE NEAREST-NEIGHBOR ROWS

The partition function for the ferromagnet of N
columns and M rows corresponding to interaction
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potential A may be written in terms of a functional
integral according to Eq. (2.6). The k of that equa-
tion is to be interpreted as a double index, k for
column and [ for row. One has

Qvu = E{INI lIMI cosh [(y) X (%, l)]}(Qe_"" YH, (7.1)

k=1 Q=1

where the mean of X (k, [) is zero and the covariance
is

E{X(k, )X, 1)}
= e—-ylk_kll[al',l + T(al’-l—l + 6”'l+1)].

A statistically equivalent description of such a
stochastic process may be given in terms of M inde-~
pendent Ornstein—Uhlenbeck processes U,(k), with
mean zero and covariance

E{UM®U(K)} =" 6, (1.3)

Define the constant £, related to the nearest-row
interaction parameter 7 of Eq. (6.1), by

r=[E1 — 9P

It can easily be confirmed by direct substitution
that equating the stochastic process X (k, 1) to

Xk, 1) = 8U0) + 1 = Vi)

yields the required covariance (7.2). In analogy
to the one-dimensional procedure, the functional
integral in expanded form is

(7.2)

(7.4)

(7.5)

E[ﬁ T cosh (6B + (1 — U m@”]

- f: f [kINI C(u,,)]W(ul)P(u1 [ugz, v)

<+« Pluy—, | Uy, v) duy - -« duy, (7.6)

where the set U, = uyy, -+, Way, <+, Upae; C(U) 1

0t = TT cosb (60 B+ (1 = D]}, (7.7)

and the probabilities W(u) and P(u | u’, v) are
products of the corresponding one-dimensional prob-
ability functions, e.g.,

W) = IT W, )

P(uk |uk', ’Y) = HP(UH luk’h ’Y)- (7-9)

The partition function is related to the highest
eigenvalue of an M dimensional Kac equation
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[ s v, Vo) da = e,  7.10)

or equivalently,

exp [§ log C(®)] exp [v(V* — ix-x)]

X exp [§ log C@)p®) = MM 7p(x).  (7.11)
One has, as in one dimension,
lim QWi = 2% lim /™. (7.12)

N, M-ow M-ox

To lowest order in v, the exponentials may be com-
bined so that one need study only the eigenvalue
problem

{IZ; [—(0°/81,)" + %27 — v™" log cosh ((y)}[Ee,

+ (1 - E)*xm])]}sv(X) = xp(x), (7.13)
with
Ao = exp GMy ~ ko).

For high enough temperatures, the log cosh may
be expanded, and the equation becomes

Z [~ (8°/02) + (1 ~ 2v)a?

- -};(21/7)(:5,_112, + 1,‘1:1}“1)]90 = Ko, (7.14)

or

[—V? 4+ LA :xx]p = ke, (7.15)

where A is the Toeplitz matrix (for an infinite system,
M — ») with (1 — 2») on the diagonal and (—2v7)
on the first off-diagonal positions. The partial dif-
ferential equation is rendered separable by the
transformation

M
— - 2xikn/ M
Yo = M7 20N < yr

k=1

(7.16)

with inverse

Q@
T, = M—; Z y"e—2rt’lm/u — :l)",;
n=~Q
For M odd, the index n takes on the M values from
—3(M — 1) to +3(M — 1), while for M even, the
limits are —3(M — 2) < n < 1{(M — 1). Without
loss of generality we assume M odd, and write for
brevity, @ = 3(M — 1).
With this transformation the eigenvalue equation
becomes

(7.17)

Q

2 [—(0°/0yn 8y-0) + }lyy-]w(3) = ku(y), (7.18)

n=-—0



1086 M. KAC

where

-3
2 —2xiin/ M
Wy = Z A:.u—ie " ’

fm—00

(1 — 2) — 4vr cos 2an/M),
1 — 2 + 27)]
+ 4vr[l — cos 2nn/M)].

A complete separation of the partial differential
equation is achieved in terms of the real and imagi-
nary parts of y,. Define

'\/EReyn = ﬁRey—ny
V2 Im y, = —-\/§Imy_,.;

then, grouping the +n and —n terms,

(7.19)

Zn

(7.20)

2, =

2
- + 1,2
2( OYn OY_n 4w,,y,,y_,.)

62
The lowest eigenvalue «, is given by

Q
an
n=-0

2
TG+ a2

(7.22)

Ko =

DO =

— (M/2x) fo "1~ %) — dvr cos 6] d6.  (7.23)

A transition occurs at »(1 4+ 27) = %, again the
mean field value, when the lowest w, w,, becomes
negative. This indicates that variations of y, are
becoming large. Since each x; has a bit of the zeroth
mode in it, each of the x’s becomes large. Both
qualitatively and quantitatively the situation is
similar to the one-dimensional case. Each z must now
be expanded about s displaced center, 5(2%71).
Siegert'® has investigated the question of whether
a lower or equivalent minimum might be achieved
by selecting different values, n:, for each z, and
found this not to be the case. The condition that g
represent a minimum is

tanh {[22(1 + 291} = 7[> + 27)]°L

The new eigenvalue equation is identical with the
old one, Eq. (7.11), with the replacement

x — v~ log cosh {[2v(1 + 27)]*9} + 37"y
=x+ 3y log [1 = #*/2(1 + 20)] + v 'o’
(7.24)

& =

replacing «,

10 A, J. F. Siegert (to be published).

AND E. HELFAND

vsech’ {[2v(1 + 27)]*1]}
= — 19*/(1 + 27) replacing ».

-
I

(7.25)

The partition function both above and below the
transition may be written in the unified fashion
lim (1/MN)InQuy = In2 — 14’

M N-ox

+ log cosh {[2x(1 + 27)])*}

- %'y{l —v 4+

X fo [ = 27) — /7 cos ] da}, (7.26)

since above the transition, 4 = 0 and ' = ». Com-
paring the result with the one-dimensional formula,
one sees that, to zeroth order in +, the only dif-
ference is the replacement of J with J(1 4+ 27).
There is again a specific-heat discontinuity of 3k,
at the transition point. As the critical temperature
is approached from above, a log (T — T.) growth
occurs in the O(y) term of the energy.

The critical properties of the system are much
more difficult to evaluate than in one dimension.
The fourth-order term in the expansion of log cosh
will involve mixtures of the normal variables, y,.
This problem is currently under investigation.

8. EXPONENTIAL INTERACTION ALONG A ROW AND
NEAREST-NEIGHBOR INTERACTIONS IN THE
COLUMNS

In order to study model B, defined by Eq. (6.2),
write the random process X(k, ) in terms of two
sets of processes: the U,(k) of Eq. (7.3), with ex-
ponential covariance; and Z,(k), a set of independent,
completely random, Gaussian processes, i.e., mean-
zero, and covariance

E{Z,(B)Z,.(E")} = 8,28,,.
If we take
Xk, ) = YUK + 8Z,(0) + 1 ~ 9Z,..(H), 8.2
then, as required,
E{X(, DXE', 1)} = ve """ *15,,
+ S b F T&A[O1r, 100 + 810i]. 8.3

The partition function, as before, may be written
as a functional integral, and is related [cf. Eq. (7.12)]
to the highest eigenvalue of

8.1

[ Ve, 9w @80 |w, vV, 2)

X &, z’) du’ dz’ = \®(u, z), (8.9
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where

M
Vw, z) = ] cosh (Plvbu, + 2 + 1 — kil
i=1
(8.5
As far as the z dependence is concerned, the kernel
is in a factored form, so this variable is eliminated by
multiplying Eq. (8.4) by V}(u, z)W*(z) and inte-
grating over z. The result is

[ DSt |w, D @el) dv = M), 8.6)
where
D) = f Ve, 2W(2) dz, ®8.7)
and
o) = D7 Hu) f Wz) Vi, 2)®, z) dz; (8.8)
or in differential form
exp [} log D(x)] exp [v(V* — ix-3)]
X exp [} log D@e(x) = A P p(x), (8.8)
with
llm QIIV/AI:_M — 26—}:(1+1) hm )\(l)/M. (8.9)

For temperatures above any transition, D may
be expanded for small v. One finds, as M — =,

D(x) = D, exp [y D 2.z, tanh'' ™™ pr + ...],
t,m

(8.10)

where

' = ¢! cosh vr

is related to the partition function when the columns
do not interact.
To lowest order in v,

Ao = Dy exp [3My — xov],
[—V* + iB :xxlp = xo,

B, = 1 — 2
— 2t

(8.11)
(8.12)

b=m  g13

L # m,

where ¢ = tanh »r.
A separation is again achieved with the variables
y. of the previous section. The «’s are given by

t cos (2mn/M) — ¢
1 — 2t cos 2en/M) + ¢

wi=(01—22) —4 - (8.14)

When the smallest w, namely, v = 1 — 2™,

vanishes at v, given by
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2ver __ 1
¢e = 2

(8.15)

the solution becomes unstable. We must then ex-
pand D(x) in the variables w, = z, — 7(2/v) with
7 given by

7(29)"* = sinh [(2)}1]/{sinh’® [2)'n] + € *7}F, (8.16)

5o as to put one at the absolute minima.
The solution to lowest order in v is then given by

Mo = Dy exp [—iMn’ + My — k], (8.17)
with
D™ = % exp [3n(1 + 27)]{cosh [(2)}n]
+ (sink® [2)'q] + e ¥}, (8.18)

Equation (8.12) for x, has B generalized by the
replacement

v =» — iq° replaces v, (8.19)
and
y — cosh [(20)}n] — {sinb® [2n)n] + ¢ *7}}
cosh [(2v)ty] + {sinh® [(2)g] + ¢ **"}}
replaces ¢. (8.20)

This is essentially all that is needed to determine
the partition function to O(y) both above and below
the transition. The modification in the presence of
an external field, or for the lattice gas, involves
merely adding ¢ onto (2»)y on the right-hand side
of Eq. (8.16) which defines #, just as Eq. (4.7)
generalizes Eq. (3.18). These results will not be
written out in detail here. Suffice it to mention
that there is a specific-heat discontinuity of
6r.k(1 + 2v,7)(3 — 47)”! at the transition point,
and that the O(y) term of the energy goes as
vlog (T — T.) as T. is approached.

9. INTERACTION EXPONENTIAL IN THE “DISTANCE”
MEASURED ALONG THE BONDS

To treat model C we will again introduce inde-
pendent Ornstein—Uhlenbeck process U,(k) (I =
0,1, ---, M), as defined by Eq. (7.3). The X(%, 1)
process will have a covariance equal to

exp [—v(k — k| + |l — V'],

as required by our general theory, if we equate it
statistically to

Xk, ) = Uk)e ™"

14
+ A = Y U,

p=1

9.1)



1088 M. KAC AND

As usual, the properties of the system are related
to a Kac equation, which in differential form is
exp [ log T(®)] exp [v(V* — {x-%)]

X exp [4 log T®)]p(x) = A1 70(x), (9.2)

where
M

T(x) = ]] cosh {V*'y[xoe_”
i=1

4+ @1 — et RZ x,,e"’”‘”):I}. (9.3)

p=1

For small v, the exponentials may be combined, and
we need study only

[~v*

or, above the transition,

M
{[—(az/axﬁ) + 31 — »zb — 27, X x,e'“]

xx -y log T@le = xe, (9.9

+ I:i — (8°/0zY)

I=1

+ i zzz'l (81 — 2V’Ye—7”_lll)xzxz']}¢ = kp. (9.5)
The x, variable has been separated out because its
inclusion with the other variables would spoil the
Toeplitz nature of the matrix of the quadratic form.
The complete problem can be handled by the
methods of bordered matrices,"”* but the single de-
gree of freedom represented by z, makes contri-
butions which relatively vanish as the number of
other degrees of freedom becomes infinite. Dropping
Zo, we can diagonalize Eq. (9.5) with the variables
Y of Sec. 7. The w’s are given by

wa =1 = 4" {200 — y)[1 — cos 2mn/M)]
+ ¥*[2 — cos 2an/M)] 4+ 0(°)}7".

The lowest one is n = 0,

(9.6)
wy =1— 4y, 9.7)

so that a transition ocecurs at », = 1.
The lowest eigenvalue x, is given by

— 1
Ko—izwn
n

M ]*
" 2(1—y)(1—cos 6)+~+*(2—cos ) a8.

-2
(9.8)

The second term of the radical is O(y*) except for

4y

IUH, 8. Wilf, Mathematics for the Physical Sciences (John
Wiley & Sons, Inc., New York, 1962).

E. HELFAND

a region |6] = O(y) where it is O(1). Thus the integral
is'

ko = 3M[1 + O()], 9.9)
and the partition function is
lim (NM)™7 In Quy = In2 + 0(°). 9.10

N, M=

It is not surprising that the first correction is O(y"),
in view of the fact that each pair interaction goes
as v°. These terms arise not from a O(y®) contribu-
tion from each normal mode (of the stochastic field on
a particle in a row), but from a O(y) modification
of O(y) of the modes (the long-wavelength ones). The
first of these O(y)’s is due to the long-range effects
along a row, while the second arises from long-
range effects between rows.

We could go on to study the region below the
transition, or the lattice gas by shifting the center(s)
of the eigenfunction(s) as before, where » is now
given by

n/20' = tanh 2y + ¢).
The result is that

(9.11)

v =y — 19° replaces »,

K =x— 3y log (1 — 7'9") — 3y 'n’ replaces «.

The outstanding thermodynamic properties are a
specific-heat discontinuity of 3k at 7., and the
van der Waals equation of state

Bp = —In(l — p) — 8vp'.
10. NEAREST-NEIGHBOR INTERACTIONS

(9.12)

The possibility of expressing the partition func-
tion in terms of the largest eigenvalue of an integral
equation arises from the exponential nature of the
potential function. It will now be demonstrated that
nearest-neighbor interaction law is a limiting case
of the exponential.

In one dimension, consider the potential

v(kk’) = —Je" exp (—v [k — k']).

In the limit asy — o, v(kk’) vanishes for |[k—k'| > 1,
and is —J for |k — k’| = 1. As formulated above,
the k¥ = &’ term is retained in the functional integral.
This may prove troublesome since v(kk) diverges,
but this self-energy is eventually subtracted out.
By a modification of this type, models (A), (B),
or (C), above, may be reduced to the two-dimen-
sional nearest-neighbor problem.

12 Nole added in proof. J. McKenna has shown that ex-

plicitly xo = M{1/2 — v(v/87) [©, Z=1/%1 4 Z)~1if(1 +
I 4 (1 — 4y + ZNETIZ 4 4ve L
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All of the irreducible representations are found for a single pair of creation and annihilation oper-
ators which together with the symmetric or antisymmetric number operator satisfy the generalized
commutation relation characteristic of para-Bose or para-Fermi field quantization. The procedure
is simply to identify certain combinations of these three operators with the three generators of the
three-dimensional rotation group in the para-Fermi case, and with the three generators of the three-
dimensional Lorentz group in the para-Bose case. The irreducible representations are then easily
obtained by the usual raising and lowering operator techniques. The applicability of these techniques
is demonstrated by a simple argument which shows that the commutation relations require that the
generator to be diagonalized have a discrete spectrum.

I. INTRODUCTION

ONSIDERABLE recent attention has been
given to generalized schemes of field quantiza-

tion which would describe particles obeying sta-
tistics more general than the familiar Bose~Einstein
or Fermi-Dirac types.'™® The essential new feature,
from a mathematical point of view, is that the
creation and annihilation operators obtained from
the Fourier decomposition of the field are not re-
quired to satisfy the usual commutation or anti-
commutation relations. If we limit our attention to
just a single pair of creation and annihilation opera-
tors a' and a, the generalization of the commutation
or anticommutation relations consists of the equation

la, N] = aN — Na = a, 1)

together with an assumption that the number opera-
tor N has a particular form such as the symmetrized
or antisymmetrized forms®'’*°

N = (a'a + ad),

N = B)a'e — aa").

(B)
(F)

* Supported in part by the United States Atomic Energy
Commission.

t On leave of absence from the Atomic Energy Establish-
ment, Bombay, India.

1 (3. Gentile, Nuovo Cimento 17, 493 (1940).
( 935'21‘) Okayama, Progr. Theoret. Phys. (Kyoto) 7, 517

1 .

3 H. 8. Green, Phys. Rev. 90, 270 (1953).
(19j5 g) E. Mc Carthy, Proc. Cambridge Phil. Soc. 51, 131

§ T. W. B. Kibble and J. C. Polkinghorne, Proc. Roy. Soc.
(London) A243, 252 (1957).

¢ D. V. Volkov, Soviet Physics—JETP 9, 1107 (1959) and
11, 375 (1960).
(19;28). Kamefuchi and Y. Takahashi, Nucl. Phys. 36, 177

8 G. F. Dell’Antonio, O. W. Greenberg, and E. C. G.
Sudarshan, Proceedings of the Istanbul Summer School (1962),
edited by F. Gursey (Gordon and Breach, New York, 1963);
see also University of Rochester Report NYO-10241 (un-
published).

% H. Scharfstein, Thesis (New York University, 1962).

The purpose of this paper is to present a simple
method for exhibiting all of the irreducible repre-
sentations of operators a' and a which satisfy Eq.
(1), together with either (B) or (F). Since the
familiar representations in which the operators a'
and o satisfy the usual commutation or anticom-
mutation relations are particular solutions for the
cases (B) and (F), respectively, we will refer to
these cases as ‘“para-Bose” and “para-Fermi”.

For the para-Fermi case, our method consists
simply of recognizing that the number operator,
creation operator, and annihilation operator satisfy
the same commutation relations as the third com-
ponent and the raising and lowering operators for
angular momentum.'® The irreducible representa-
tions in this case correspond to the well known ir-
reducible representations of the three-dimensional
rotation group.

In the para-Bose case, the corresponding set of
operators does not form a recognizable Lie algebra
since it is not even closed under commutation. How-
ever, we do obtain a Lie algebra by considering the
number operator together with the squares of the
creation and annihilation operators. The appropriate
combinations of these three operators satisfy com-
mutation relations of generators of the three-
dimensional (two space, one time) Lorentz group.
From these commutation relations, plus the fact
that the number operator (B) is positive, we can
find the irreducible representations by the usual
raising and lowering operator techniques. The ir-
reducible representations of a' and a are then ob-
tained by taking square roots.

Our procedure is to find the irreducible repre-
sentations of operators satisfying the commutation

10 The connection between spin-1/2 angular-momentum
operators, and creation and annihilation operators satisfying
anticommutation relations is well known. P, Jordan and E. P.
Wigner, Z. Phys. 47, 631 (1928).
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relations of the three-dimensional Lorentz group to-
gether with the requirement that the number opera-
tor be positive. If we were interested in finding
actual irreducible representations of the Lorentz
group, we would look for the irreducible representa-
tions of operators satisfying these same commuta-
tion relations but the positiveness would be re-
placed by a requirement insuring the compactness
of the subgroup of (two-dimensional) space rotations.
Thus, most of the representations that we find do
not, in fact, generate representations of the three-
dimensional Lorentz group, and many of the
representations of generators of the three-dimen-
sional Lorentz group, as found by Bargmann,' do
not satisfy our requirement that the number opera-
tor be positive.

The raising and lowering operator techniques can
be rigorously justified only if we know that the
operator whose eigenvalues are being raised and
lowered, namely the number operator, does in fact
have a discrete spectrum. If we do not know this,
we run the risk of overlooking representations in
which this operator has a purely continuous spec-
trum. Hence we give a short proof that the com-
mutation relations alone imply that the number
operator has a discrete spectrum in each irreducible
representation. This step is essential particularly
in the para-Bose case; although the generator cor-
responding to the number operator is known to
have a discrete spectrum for all irreducible repre-
sentations of the three dimensional Lorentz group,*
we find representations of the commutation relations
which do not generate representations of the group.
For the (compact) three-dimensional rotation group,
it is of course true that representations of the
commutation relations are equivalent to representa-
tions of the group. But we do not need to use either
this fact or the general theorem that the irreducible
unitary representations of a compact group are finite-
dimensional and thus have generators with dis-
crete spectra; we prefer to notice that the discreteness
of the spectrum follows directly from the com-
mutation relations.

The para-Fermi case is treated in Sec. II, and the
para-Bose in Sec. ITII. In Sec. IV we make some
remarks on the relation of our results to the work
of Kamefuchi and Takahashi,” of O’Raifeartaigh
and Ryan," and of Greenberg and Messiah.™

1Y, Bargmann, Ann. Math. 48, 568 (1947).

1?2 L. O’Raifeartaigh and C. Ryan, Proc. Roy. Irish. Acad.
A62, 93 (1963).

13 0. W. Greenberg and A. Messiah (to be published). We
are indebted to Prof. Greenberg for communicating these
results to us prior to publication.
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IT. PARA-FERMI OSCILLATOR

We want to find all of the irreducible representa-
tions of operators a' and o which satisfy the com-
mutation relation

[a, N] = q, )

with the antisymmetric definition of the number
operator

N = 3)(a'a — aa)). (F)

We define the three symmetric operators J,, Js,
and J; by making the identifications

e =Ji+id, a=J,—il,, N=Js. (2

Equations (1) and (F) are then equivalent to the
familiar angular-momentum commutation relations®

[']u') J:] = 7:; ];k = 1;27 3 (3)

Our problem is equivalent to that of finding the
irreducible representations of symmetric operators
J; which satisfy the commutation relations of
generators of the three-dimensional rotation group.

Before referring to the well-known irreducible
representations of angular momentum, we wish to
remark that Eq. (3) implies that the operator J,
has a discrete spectrum in each irreducible repre-
sentation of J,, J,, and J;. The usual treatment of
angular momentum in terms of eigenvectors of J,
is thus seen to be rigorously applicable. The proof
is completely analogous to that given in Sec. III
to establish the analogous property for the operator
H,. (Simply replace H,, H,, and H, everywhere in
that proof by J,, J, and Js, respectively.)

By the wusual raising and lowering operator
techniques,' we can show that the familiar angular-
momentum representations are all of the irreducible
representations of symmetric operators J,, J,, and
Js, satisfying Eq. (3). All of the irreducible repre-
sentations of operators a' and @ satisfying Eqgs. (1)
and (F) can be obtained by inverting Eqgs. (2). We
get a different irreducible representation for each
different value

j = 1 3 ...
]_0;7;1)7}2:2 ’

1€k,

giving one of the possible eigenvalues j(j + 1) for
the invariant operator

JP=Ji+ I+ T
P@'a + aa’) + B)(a'a — aa')”.
The representation space in each case is (2j + 1)-
dimensional and the number operator has (2j 4+ 1)

14 P. A. M. Dirac, Quantum Mechanics (Oxford University
Press, London, 1958), pp. 144-149.
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different eigenvalues. The first nontrivial representa-
tion is that for which j = 3. In this particular case
the representation is two-dimensional, the number
operator has two different eigenvalues, and o' and a
are represented by the familiar 2 X 2 matrices
which satisfy the anticommutation relation charac-
teristic of Fermi-Dirac quantization.

III. PARA-BOSE OSCILLATOR

We want to find all of the irreducible representa-
tions of operators a' and a which satisfy the com-
mutation relation

[a, N] = a, ey
with the symmetric definition of the number operator
N = 3)a'a + aa)). (B)

In this case, since N is not the commutator of af
and a, these three operators do not form a Lie
algebra. But the set of operators a'a!, aa, and N
is closed under commutation. If we define the three
symmetric operators H,, H,, and H, by

H, = 3)@'a’ —as), H,= @)(d'a" + aa),
H, = ()N,
we find in fact that the commutation relations
[H,, Hy] = iH,, [H,, H,] = iH,, @)
—[H,, H,] = iH,

follow from Eqgs. (1) and (B)."® These differ from
the angular-momentum commutation relations (3)
only by the presence of the minus sign in the last
equation. They are the commutation relations satis-
fied by generators of the three-dimensional (two
space, one time) Lorentz group. The operator H,
corresponds to the generator of rotations of the
two-dimensional space plane, and H, and H, cor-
respond to the generators of Lorentz transformations
in the two space directions.

Each irreducible representation of operators af
and e satisfying Eqs. (1) and (B) will give sym-
metric operators H,, H,, and H, satisfying Eqgs. (4).
Our procedure is to find the relevant irreducible
representations of H,, H,, and H,, from which we
will be able to work back to a' and a. As a first
step it is essential to show that H, has a discrete
spectrum in each irreducible representation of sym-
metric operators H,, H,, H, satisfying Eqs. (4).

15 Tt hag been pointed out to us by Dr. S. Okubo that this
type of construction has also been used by H. J. Lipkin,
“Collective Motion in Many-Particle Systems,” Brandeis Uni-

versity Summer Institute Lecture Notes (W. A. Benjamin Com-
pany, Inc., New York, 1959).
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From Egs. (4), it follows that the operators H,
and H, transform as components of a vector under
rotations generated by H,;

Heer ivi )
e He " = H, cosr — H,sinr,

e Hye " = H, cosr + H,sinr.

By considering the case r = 2m, we find that the
unitary operator exp (2xtH,) commutes with each
of the operators H,, H,, and H,, so by Schur’s
lemma, exp (2wiH,) must be a scalar multiple of
the identity in each irreducible representation of
H,, H;, and H,. Since it is a unitary operator, we
have in fact that

e2riH.; = e2fid
with d a real number. If z is any point in the spec-
trum of H,, we thus have, by the spectral mapping
theorem, that

2riz __ 2mid

or that
x=d+mn,

with n an integer. We have shown that the spectrum
of H, in each irreducible representation is discrete
and consists of points separated by integer spaces.
This property, which is strictly analogous to that
of the angular-momentum operators, is, of course,
not shared by the operators H, and H,.

According to definition (B), the number operator
is positive. Our next step is to find all of the ir-
reducible representations of symmetric operators H,,
H,, and H, satisfying Eqs. (4), with the additional
restriction that H, be positive.

From Egs. (4) it follows that the operator

Q=Hi+ H, — H;

commutes with each of the operators H,, H,, and H,,
s0 by Schur’s lemma,  must be a scalar multiple
of the identity in each irreducible representation of
H,, H,, and H,. Since @ is symmetric, we may assume
that it is a real number. From the operator functions
of H,, H,, and H,, we may choose the complete set
of commuting operators consisting of @ and H, (in
analogy to J® and J; for angular momentum). The
irreducible representations can be obtained by
finding the simultaneous eigenvectors of @ and H,
and constructing the matrices for H,, H,, and H,
in this orthonormal basis. Since @ is simply a number
in each irreducible representation, this amounts to
finding the possible values for @ and the eigenvalues
and eigenvectors of H, consistent with each value
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of Q. The different values for Q will thus correspond
to the different irreducible representations.

We define raising and lowering operators F and
G by

F=H,+iH, G=H —il,=F"
and find that
(Ho, F] = F, (®)
(H,, Gl = —G, (6)

F'F=GF = Q+ H: + H,,

G'G = FG = Q + H; — H,. 8)

Consider any irreducible representation of Hj,
H,, and H,. We may assume that in this representa-
tion @ is some fixed real number, and H, is a positive
operator with a discrete integrally spaced spectrum.
Let |h) be an eigenvector of H, with eigenvalue h;

Ho kY = b |h).

From Eq. (5) it follows that F|h) is either the zero
vector or an eigenvector of H, with eigenvalue
h + 1. If it is not zero, we will label it by its eigen-
value h + 1. In either case, assuming that all
eigenvectors are to be normalized, it follows from
Eq. (7) that

FIn) = ch)@Q + I + B} [h + 1), 9

where c(h) is a complex number with absolute
value one. It follows similarly from Eq. (6) that
G|h) is either the zero vector or an eigenvector of
H, with eigenvalue h — 1. In either case, it follows
from Eq. (8) that

Glhy=ch—D*Q+H —hh—-1). @10
Starting with the given eigenvector of H, with
eigenvalue h, we may repeatedly apply the operator
G and construct eigenvectors of H, having eigen-
values successively decreased by one until we reach
a vector on which G gives zero. Our requirement
that H, be positive implies that we do in fact find
such a vector—for otherwise, we would have nega-
tive eigenvalues for H,. Let g be the eigenvalue of H,
for this eigenvector on which @ gives zero. Then
from Eq. (8) or Eq. (10),

Q+92_g=0)
so that
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The positiveness of H, requires that g be non-
negative. For the case g = 0, we have @ = 0, and
it follows from Eq. (7) or Eq. (9) that F gives zero
when applied to the eigenvector of H, with eigen-
value g. This vector thus yields the trivial one-
dimensional representation with H, = H, = H, = 0.
For a case where g is positive, we see from Eq. (7)
or Eq. (9) that we can repeatedly apply the operator
F, starting with the eigenvector of H, with eigen-
value ¢, and construct eigenvectors of H, having
eigenvalues successively increased by one without
ever reaching a vector on which F gives zero. The
infinite sequence of eigenvectors thus constructed
spans an infinite-dimensional space which is ir-
reducible under the operation of F, @, and H,,
and therefore also irreducible under H,, H,, and H,.
We have shown that all of the irreducible representa-
tions with H, positive will in fact be found by this
construction.

For each different value of g, which may be any
nonnegative real number, we get a different ir-
reducible representation of H,, H,, and H,, satisfying
Eqs. (4) with H, positive. Except for the trivial
representation corresponding to g = 0, all of these
representations are infinite-dimensional. The opera-
tor @ has the value g(1 — g). The operator H, has
the nondegenerate discrete spectrum consisting of
the points ¢ 4 n, with n a nonnegative integer.
The corresponding eigenvectors |g + =) form an
orthonormal basis in the representation space. In
this basis, the matrix for H, is of course diagonal,

Hq g +n) = (g +n)lg+n),

and the matrices for H, and H, can be obtained from
those for F and @, which, from Eq. (9) and Eq.
(10), are

Flg+n)=clg+n)lgd —g)+ (g+n)’+ g+n]
Xlg+n+1)

=clg+m[2g+mn+ I lg+n41),
(13)

Q=9g—¢ =g0-9.

(12)

Glg+n)=clg+n—1)*
X [g(t = 9+ (g +n)* — g+n]*
X lg+n—1)
=c(g+n—D*[(2¢+n+ Dnltjg+n— 1).
(14)
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As was mentioned in the introduction, most of
the representations that we have found for sym-
metric operators H,, H,, and H, satisfying the
commutation relations (4), are not suitable repre-
sentations for generators of irreducible unitary
representations of the three-dimensional Lorentz
group. The reason is easy to see. If H, is actually
to be the generator for rotations of the two-dimen-
sional-space plane, it is necessary that

le:‘Ho

= +1,

in order that rotations of 27 have the required
character. This implies that

e2rt’ﬂ — j:l,

which restricts ¢ to the values ¢ = (3)m, with m
an integer. Only this subset of our representations
are admissible as representation of the Lorentz
group. On the other hand, many of the representa-
tions found by Bargmann'' for generators of the
Lorentz group are not of use to us because they fail
to satisfy our additional requirement that H, be
positive.

Let us now work backwards from the irreducible
representations of H,, H,, and H, to construct the
irreducible representations of at, @, and N. Inversion
of the equations defining H,, H;, Ho, F, and G gives

a'a = —42F, (15)
aa = 12G, (16)
N = 2H,, an

and Eqgs. (12), (13), and (14) can be used to obtain
the matrices for these operators in each irreducible
representation of H,, H,, and H,. It remains to
take square roots.

From the commutation relation (1), we see that
when the operators a! and a operate on an eigen-
vector of N they give, if not the zero vector, an
eigenvector of N with eigenvalue respectively in-
creased or decreased by one. Each irreducible repre-
sentation of a' and a is defined on a vector space
spanned by the nondegenerate eigenvectors of N.
These eigenvectors correspond to integrally spaced
eigenvalues which, since N is positive, range up-
wards from some lowest nonnegative eigenvalue. We
distinguish two subspaces—the subspace spanned
by eigenvectors corresponding to eigenvalues which
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differ from the lowest eigenvalue by an even non-
negative integer (even subspace), and the subspace
spanned by eigenvectors corresponding to eigen-
values which differ from the lowest eigenvalue by
an odd positive integer (odd subspace). These two
subspaces together span the whole representation
space for a' and a. Our interest in them is due to
the fact that the operators a'a!, aa, and N leave
each of these subspaces invariant. Each irreducible
representation of a' and a gives rise to two irreducible
representations of H,, H,, and H,, one on the even
subspace and the other on the odd subspace. In
working backwards to get an irreducible representa-
tion of a' and a, we must take the square root of
the direct sum of two irreducible representations
of H,, H,, and H,.

Let us first combine the matrices for H, from
two irreducible representations of H,, H,, and H,
to obtain the matrix for N according to Eq. (17).
Suppose that on the even subspace we choose the
irreducible representation for H,, H,, and H,, for
which H, has the lowest eigenvalue g. Then 2g is
the lowest eigenvalue of N, and N has the eigen-
values 29 + 2n, with » a nonnegative integer, cor-
responding to the eigenvectors spanning the even
subspace. Now we know that N must also have the
eigenvalues 2g + 2n + 1, so we have no choice
but to choose H, on the odd subspace to have the
eigenvalues ¢ + 3 + n. Therefore, on the odd sub-
space we must choose the irreducible representation
of H,, H;, and H,, in which H, has the lowest eigen-
value g + 3. If we order the eigenvectors of N (which
form an orthonormal basis in the direct sum of the
even and odd subspaces) according to the increasing
eigenvalues of N, we effectively “fan together’ the
two irreducible representations, taking first a vector
from one and then a vector from the other, and the
matrix for N is

,

29 0 0 0
0 2¢g4+1 0 0
N=1]0 0 242 0 ,
0 0 0 2 +3

L

with the first eigenvalue coming from one representa-
tion of H,, the second from the other, etc.

Now we combine the same two irreducible repre-
sentations of H,, H,, and H, on the even and odd
subspaces, using Eqs. (13) and (15), to obtain the
matrix for a'at:
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0 0 0 0 0
0 0 0 0 0
2(29)* 0 0 0 0
., 0 2@2g+ 1)} 0 0 0
2¢ =19 0 2[2g + 1)2)} 0 0 '

0 0 0 2[(2¢g + 2)27* 0

0 0 0 0 2[(2g + 2)3)t

with the general matrix element being nonzero only
in the cases

(4g + i — G + DI for j odd,

(49 + i1

Here we have omitted both the phase factors ¢
of Eq. (13) and the factor —z of Eq. (15), it being
understood that each matrix element of a'a' is
determined only to within a phase factor. The odd
row-odd column matrix elements come from the

t t
(a a )i+2.:‘ =

@'a) e, = for j even.

0 0 0 0 0 0
2ep)E 0 0 0 0 0
0 V2 0 0 0 0

) 0 0 [2Q2¢+ D] 0 0 0---{,
* =1 0 0 0 4} 0 0
0 0 0 0 [22¢+2)F 0
0 0 0 0 0 6*

with the general matrix element being nonzero
only in the cases

@)r,s = (g +j = D}
@)y = 7
which may also be written as
@) = [@g — HA = (=1)) + 1.
It is to be understood that each matrix element of
a' is determined only to within a phase factor.
Each irreducible representation of operators af
and a satisfying Eq. (1) with the symmetric defini-

tion (B) of the number operator N, is given by a
matrix of the above form. We get a different non-

for j odd,

for j even,

irreducible representation of ¥, G, and H, on the
even subspace, with H, having the lowest eigen-
value g, and the even row—even column matrix ele-
ments come from the irreducible representation of
F, G, and H, on the odd subspace in which H, has
the lowest eigenvalue g + 3.

We know that a' will have nonzero matrix ele-
ments only one place below the diagonal. We find
that the only matrix of this kind which has a square
equal to a'a’ and which gives the correct matrix
for N is

trivial irreducible representation for each positive
real value of g. (The irreducible representations of
the operators H,, H,, and H,, corresponding to g = 0,
can only be combined to give the trivial one-dimen-
sional representation with af = a = 0.) For the
particular case ¢ = %, we get the familiar matrix

(av)i+l.i = .’I-’};
which satisfies the commutation relation
[a,a] = 1,

characteristic of Bose-Einstein quantization.'

16 For the particular case of operators satisfying the usual
commutation relations, the fact that there is just the one
familiar irreducible representation was proved by J. von
Neumann, Math. Ann. 104, 570 (1931).
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IV. DISCUSSION

An alternative approach to determining operators
satisfying the commutation relation (1) with the
symmetric or antisymmetric definition (B) or (F)
of the number operator, is to find more restrictive
equations satisfied by a' and a such that the general
commutation relation is automatically satisfied by
the operators which satisfy the more restrictive
equation. An example of such an equation is the
familiar commutation relation or anticommutation
relation characteristic of Bose—Einstein of Fermi-
Dirac quantization. We have seen that of the many
irreducible representations of operators a' and @
satisfying the general commutation relation (1) in
the para-Bose or para-Fermi case there was just one
representation which satisfied the familiar commuta-
tion or anticommutation relation, respectively.

A sequence of successively higher-order generaliza-
tions of the familiar commutation and anticommuta-
tion relations have been derived by Kamefuchi and
Takahashi.” Each of these has the property of im-
plying the general commutation relation (1) with
the relevant definition (B) or (F) of the number
operator. One can check, at least for the first few
cases, that our irreducible representations of para-
Fermi operators corresponding to j = 1, %, ete.
satisfy the successively higher-order generalizations
of the anticommutation relation (the representation
for j = 1 satisfies the ordinary anticommutation
relations), and that our irreducible representations
of para-Bose operators corresponding to ¢ = %, 3,
etc. satisfy the successively higher-order generaliza-
tions of the commutation relations (for ¢ = %, the
representation satisfies the ordinary commutation
relation). We evidently have one irreducible repre-~
sentation of operators a' and a satisfying each of the
higher-order generalizations of the commutation and
anticommutation relations. We know of no such
equation satisfied by our irreducible representations
of para-Bose operators for other than quarter inte-
gral values of g.

The irreducible representations of the para-Bose
operators a' and a satisfying Eq. (1) with the defini-
tion (B) of the number operator, have also been
found by O’Raifeartaigh and Ryan.'? Besides pro-
viding an alternative way to arrive at these results,
in what we think is a particularly simple and trans-
parent manner, our method has the advantage of
containing a proof that the number operator has
the discrete spectrum necessary to make the eigen-
vector techniques applicable.

The representations of generalized oscillator opera-
tors have also been investigated by Greenberg and
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Messiah.”® Their interest is in representations for
which there is a unique vector that is annihilated
by the operator a. They show that this vector is
necessarily an eigenvector of the operator aat. Let
p be the corresponding eigenvalue. It is then shown
that p is always an integer in the para-Fermi case,
and in the para-Bose case it is argued that only
integral values of p lead to reasonable results when
several different sets of oscillator variables are
combined to construct a quantized field. It is the
representations having these particular properties
which were established by Greenberg and Messiah.
Let us determine which of our representations exhibit
these properties.

For the para-Fermi case, consider any irreducible
representation of a' and a corresponding to some
value of j. There exists in this representation a unique
vector on which the operator a (= J, — 2J,) gives
zero, namely the eigenvector of N (= J,) with
lowest eigenvalue —j. This vector is an eigenvector
of the operator

aa' = (J, — i), +iJ) = JP — Ji = Js,
with eigenvalue
G+ -7 +i=2i

Thus p = 2j in always an integer. For each positive
integer p, we have just one irreducible representation
of ¢ and @, and these are in fact all of the nontrivial
irreducible representations.

For the para-Bose case, consider any irreducible
representation of a' and a corresponding to some
value of g. We have again a unique vector on which
the operator @ gives zero, namely the eigenvector
of N with lowest eigenvalue 2¢g. By explicit matrix
computation we find that this vector is an eigen-
vector of the operator aa' with eigenvalue 4¢g. Thus
p = 4g is an integer only for quarter-integral values
of g which correspond exactly to the irreducible
representations which satisfy the higher-order gen-
eralizations of the commutation relations derived
by Kamefuchi and Takahashi.” For each positive
integral value of p, we have just one irreducible
representation of a’ and a, but in this case there are,
of course, many other irreducible representations.

ACKNOWLEDGMENTS

We are indebted to Dr. A. J. Macfarlane for helpful
comments and discussions, and are especially grate-
ful to Professor E. C. G. Sudarshan for his continued
interest in and helpful discussions of this work.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 4, NUMBER 8 AUGUST 1963

Formulation of the Many-Body Problem for Composite Particles *

M. GIRARDEAUT

The Enrico Fermi Institute for Nuclear Studies, The University of Chicago, Chicago, Illinots
(Received 7 March 1963)

The many-body problem for a system of composite particles is formulated in a way which takes
explicit account of the composite nature of these particles and allows a clear separation between
interatomic and intraatomic interactions. A second-quantization representation, fully equivalent to
the conventional representation in which nuclei and electrons appear explicitly, is developed in
terms of atomic annihilation and creation operators satisfying elementary Bose or Fermi commutation
relations. All effects of the composite nature of the atoms are exactly contained in the interatomic
and intraatomic matrix elements and in certain exchange integrals. An application is made to the

problem of Bose condensation of fermion pairs.

1. INTRODUCTION

THERE are two distinct problems in treating a
system of interacting particles each of which
is composite in the sense of being composed of several
(more) elementary constituents. The first is the well-
known very difficult problem of finding reasonably
accurate approximate solutions of any nontrivial
gquantum-mechanical many-body problem. The sec-
ond problem, which would not occur if all particles
present were elementary, is that of even formulating
the problem in such a way as to take account of
the existence of composite particles; this is the
problem with which this paper is concerned. It is,
of course, well known that composite particles be-
have like elementary bosons or fermions when they
are (in some reasonable sense) well separated or
when the interparticle interactions are small com-
pared to the internal excitation energies,' but there
are many problems in which these criteria are
violated, yet the composite nature of the particles
remains important; two examples are high-tempera-
ture gases and the electron-pair “quasibosons” of
superconductivity theory. It would be very con-
venient if composite particles could also be treated
as bosons or fermions in problems of this type. A
different, but related, motivation is provided by the
problem of the proper description of composite
particles in relativistic quantum field theories.
It is possible (in several ways) to define asymptotie
field operators for composite particles satisfying local
commutation relations, but local finite-time field
operators for composite particles have not been

* This work was supported in part by the United States
Atomic Energy Commission.
t Present address: Institute of Theoretical Science and
gepartment of Physics, University of Oregon, Eugene,
regon.
lgThe formal proof was first given by P. Ehrenfest and
J. R. Oppenheimer, Phys. Rev. 37, 333 (1931).

defined. If this problem can be solved in the non-
relativistic case, the solution might admit a rela-
tivistic generalization.

The purpose of this paper is to show that a
second-quantization representation for many-atom?®
systems can be developed in which the afomic an-
nihilation and creation operators satisfy elementary
boson or fermion commutation relations, i.e., the
atoms behave like point particles. In this representa-
tion the Hamiltonian, expressed as a function of the
local atomic field operators, takes the familiar form
of a sum of a quadratic part representing inde-
pendent-particle (here independent-atom) energies
and a quartic part representing two-body interactions.
The price one pays for this simplified formulation
of the many-atom problem is that it is necessary to
impose subsidiary conditions on the state space
generated by the atomic creation operators in order
that it be equivalent to the conventional-state space
in which the atomic constituents (nuclei and elec-
trons) are labelled explicitly; the physical-state

vectors are required to be eigenstates of certain

‘‘exchange operators” in order that they correspond
to vectors in the conventional-state space having the
correct symmetry properties under exchange of
nuclei or electrons between different atoms. These
exchange operators have a simple explicit repre-
sentation in terms of afomic annihilation and creation
operators and numerical coefficients (exchange inte-
grals). In this formalism, all effects of the composite
nature of the atoms are exactly contained in the
interatomic interaction matrix elements, which de-
pend only upon the Coulomb interactions and the

. *Throughout this paper we shall use the term “atom”
in a very general sense, to mean any structured nonrelativ-
istic system composed of a small number of particles. Ex-
amples are real atoms or molecules and the electron-pair
“quasibosons’’ of the theory of superconductivity. The terms
“nucleus” and “‘electron’ are, therefore, also to be interpreted
in a general sense. .
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single-atom wavefunctions, and in the exchange inte-
grals, which involve only the single-atom wave-
functions.

An elementary derivation of the atomic second-
quantization formalism is carried out in Seec. 2.
In Sec. 3 an alternative derivation is carried out by
a method originally devised by Dyson® for the
treatment of spin-wave interactions, in order to
make contact with related work®* and to clarify
the significance of the exchange interactions. For
purposes of illustration, the formalism is applied
in Sec. 4 to systems of identical particles, by re-
garding pairs of particles as “quasiatoms.” For the
case of fermion pairs, the theory is compared with
previous work of Blatt and Matsubara.* It is shown
that the well-known results for the ideal Bose and
Fermi gases are obtained with the new formalism
involving pair annihilation and creation operators
which satisfy Bose commutation relations regard-
less of whether the particles making up the pairs
are bosons or fermions; Bose condensation of ideal
fermion pairs, and more generally, multiple oc-
cupation of single-fermion states, is shown to be
incompatible with the subsidiary condition. More
generally, it is shown that even for a system of
interacting fermions, complete Bose condensation of
fermion pairs is incompatible with the exclusion
principle for individual fermions; this has some
bearing on the physical interpretation of the Bar-
deen—Cooper—Schrieffer theory of superconductivity.

2. ELEMENTARY DERIVATION OF ATOMIC
SECOND-~QUANTIZATION FORMALISM

Although our formalism is applicable to systems
of arbitrary composite particles, we shall, for the
sake of definiteness, consider in this section and
the following one a system of identical atoms
each containing one nucleus and ! electrons. Let
{ea(Xzy -+ )} be a set of single-atom wave-
functions, orthonormal and complete in the sense

[ orxa, -
2 Xy e 2)eu(XMah - 2f) = (I)7TN(X — X7)
X 2 (=1 P — xl) - 8 — al), (1)

ml)¢ﬂ(Xx1 e x;) dX dx‘ e dx, = aap,

where z; = (r;0;) denotes both the position and spin-

z component of electron j, X the position of the

nucleus and also its spin-z component in case its

total spin is zero, [ means an integration over
3F. J. Dyson, P}ays. Rev. 102, 1217 (1956).

¢J. M. Blatt and T. Matsubara, Progr. Theoret. Phys.
(Kyoto) 20, 553 (1958), Sec. 4.
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positions and summation over spins, 8.5 is a Kro-
necker delta with respect to discrete and a Dirac
delta function with respect to continuous quantum
numbers, D, is a sum over discrete and integral
over continuous quantum numbers, and §(X — X')
and &(z — z') are Dirac delta functions of position
and Kronecker delta functions of spin. The form
of the completeness relation takes into account the
antisymmetry of the ¢, in the electron variables;
> r denotes a sum over all permutations P’ of
the primed variables, p(P’) being the parity of the
permutation P’.

A system of nuclei and electrons whose numbers
are appropriate to an integral number n of such
atoms has a wavefunction ¥ which can be expanded
in terms of the single-atom wavefunctions as follows:

X, o Xy e x) = E clay -+ a)
X ¢a.(X1x1 ce ZE,) e ¢an(anln—l+l ce xtn)} (2)
with coefficients
el -+ )
= f?:.(Xlxl SRR 79 IEERI™ N 0. O MR T1n)

X w(Xl te X,,x; cer xl,,)Xm R dX,,d:tl s dzz,.- (3)

This does not in any way imply that ¢ necessarily
represents a state in which the nuclei and electrons
are actually bound into atoms, since the unbound
(continuum) wavefunctions are included in the com-
plete set {¢.}.

It might be thought that the usefulness of an ex-
pansion such as (2) would be spoiled because we
have picked one particular assignment of nuclei
and electrons to atoms, i.e., nucleus 1 and electrons
1 --- lto atom 1, ete. This is, however, not the case;
it follows from the antisymmetry of ¢ in the electron
coordinates, and its symmetry or antisymmetry in
the nuclear coordinates, that either all of the coeffi-
cients ¢ remain unchanged or else all simultaneously
change sign under a permutation of the assignment
of nuclei and electrons to atoms, depending on the
parity of the permutation with respect to fermion
variables. By similar reasoning, one can show that for
a given assignment [namely, that in (3)], ¢(ey - -+ @)
is a symmetric or antisymmetric function of the a;,
depending upon whether 2J + 1 is even or odd,
where J is the nuclear spin.

The function c(a; -+ @,) may be thought of
as a new wavefunction in which nuclear and elec-
tron variables no longer appear explicitly; every
many-nucleus, many-electron wavefunction ¢ de-
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termines a many-atom wavefunction ¢ according
to (3). However, the converse is not true; there
exist functions c(e; -+ @,) whose correspondents
v(X, -+ X,z --- 2,,) have the wrong symmetry
properties under exchange of nuclei and/or elec-
trons between different atoms [with respect to the
assignment in (2)], and hence cannot represent
physical states of nuclei and electrons. It is there-
fore necessary to impose subsidiary conditions on
the space of wavefunctions ¢(ey -+ a,) in order
that they all represent physically possible many-
atom states. One requires in the many-nucleus,
many-electron state space

WXy o Xy X,y oo Xty o 1)
=4yX, X, - Xy Xy e 20),
YXy - X2 T i 1018 ip-142
e Rpe Tyt e Tranies ¢ Tan)
= =YX, - X2 0 T, 4)

where 1 < p < ¢ < n and the plus or minus sign
is to be taken in the top equation depending on
whether the nuclei obey Bose or Fermi statistics.
In the second of Eqs. (4), the electron variables ex-
changed are the farthest-left ones in atoms p and q;
since [by (2)] ¢ is automatically antisymmetric
under electron exchanges within each atom, this
entails no loss of generality. Substituting (2) and
using the orthonormality of the ¢,, one finds that
equivalent statements of (4), in terms of the many-

atom wavefunction ¢(a, - -+ a,), are
; (e |Lonuo| @B)
Xelag ++ - ap 00,1 - 0 1B0gsy @)
= dcloy -+ a,),
% (apaa lIelool aﬁ)
Xelay -+ api0a,,y - 0e1foige = ° Q)
= —cl -+ @), 3

where the exchange operators I, and I.., for
nuclel and electrons are defined in terms of their
matrix elements, which are the nucleus and electron
exchange integrals:

(@tte ol 08) = [ (X -+ )t (K] - a)

X oa(X'2) -+ xt)saﬁ(Xxf cee
X dX dz, -+ dzx, dX' dxi - - dx],

x)
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(azzaq [Ielecl aﬁ) = f ¢ty(Xx1 Tt xl)w’:q(X’xl, et x{)
X a(Xx{ws -+ - 2)os(X w2} - - - 27)
X dX dx, --- dx, dX' dz! - - - dz]. (6)

The conditions (5) associated with different values
of p and ¢ are not independent; using the symmetry
or antisymmetry of c(a; - -+ «,) in the «;, it is easy
to show that these conditions for one pair of values
of pand ¢ (e.g. p = 1, ¢ = 2) imply the conditions
for all other values of p and ¢. Rather than picking
one particular pair of values, it is most convenient
for the subsequent development to sum over all
pairs (p, ¢) and hence to state the subsidiary condi-
tions (5) in the symmetrized form

3 (e [Tane] o)

af »<q
X c(al S Q0 Qg1 Bl v an)
= +inln — Dele -+ ),
> ¥ @ el a8)
aff p<a
X c(al e,y aq—l.BatH»l e an)
= —inm — Decloy -+ ay). (7
The space of all n-atom wavefunctions c(a; - -+ a,)

satisfying these subsidiary conditions is completely
equivalent to the space of all n-nucleus, In-electron
wavefunctions (X, -+ X, z, -+ 2,,) (with proper
statistics).

The Schrodinger equation for y is

> VXX

i<k

Hy = [Z T(X) + ET(xf) +

+ z; Viw,m) + Zl kz; V(ij,,)]w — ik oy/ot, (8)

where the single-particle operators T represent the
nuclear and electron kinetic energies plus any ex-
ternal fields, and the two-particle operators V are
the nucleus—nucleus, electron—electron, and nucleus—
electron Coulomb interactions. This transforms into
the representation in terms of the many-atom wave-
functions® ¢(ay - @) as
(H — th 8/3t)cley -+ a,) = 0,
H=T4+7V,+ V, 9

where T, V,, and V' are, respectively, the kinetic

5 The dependence of ¢(a; - - - ax) on the time ¢ is not indi-
cated explicitly, but is to be understood.



MANY-BODY

energy, internal potential energy, and interatomic
interaction energy operators defined by

Te(ay « - a,) = Ea? j; (e |T] @)
X ol -+ iy - )y
Vo -+ a) = 3 (@ |V] )
Xelay + - @y -0 @),
Vielar -+ ) = 5 > o V] of)
X elor -+ 010y -+ grBatges -+ @), (10)

The single-atom and interatomic-interaction matrix
elements are defined by

@ T o) = [ ¢,(Xz, - 2)[T(X) + W)

X oo X2y -+ 2,) dX dzy - - dzy,

@ V]0) = [ o2,(Xe, - 23 ~ DV(zazs)

+ IV Xz)lpo (X2, -+ - 2,) dX dzy

N

(o [V ) = [ ot,(Xz, - )it (X'al -+ 2

X AV(XX") + PV(xz) + [V(Xx)) + V(X'z)]}
X ‘Pa(Xxl cet xt)ﬂoﬁ(X,x{
X dX dx, - -+ dzx, dX’ dx!

ceezl)

(11)

Equations (9)—(11) are derived by expanding the
various quantities Ty and Vy in terms of the ¢,
making use of the antisymmetry of these functions
in the electron coordinates, and equating to zero the
coefficients of like terms ¢a, - * - @a, in (H—1% d/3t)y.
The expansions of the terms Vy have different forms
depending on whether the two arguments of V are
in the same or different single-atom wavefunctions
@, glving rise to the terms V, and V', respectively,
in H.

A quantized-field representation can now be intro-
duced by any of the usual methods used for systems
of elementary particles. The Fock representation® is
most convenient for our purposes since it allows a
unified treatment of the cases of discrete and con-
tinuous single-atom quantum numbers a. Thus we
introduce state vectors of the form

8 V. Fock, Z. Physik 75, 622 (1932).
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-

Co
Cl(al)
: (12)

C,‘(al . an)

where ¢, is the vacuum amplitude, ¢, the one-atom
amplitude, etc; the function ¢(e;, -+ «,) in (9) and
(10) is then to be interpreted as a special case in
which ¢ is a total-atom-number eigenstate with
eigenvalue n, i.e., all rows of (12) are zero except
for the nth, which is ¢(a; « - - @,). The inner product
of two states of the form (12) is

(c,c") =ches + 2. > ctoy -

n=l az -+ ax

a)eh(ey < ay).
(13)

The atomic annihilation and creation operators a.
and a. are defined by

[ o ' ()
ACH, 2¥¢, ()
I : . (9
tlar - a)| |+ Diewales -+ ana)
and
Co
ACH)
aL .
Calay -0 ay)
i . ‘
daa.Co
= : , (15)
M} /n) 2o p (£1)PP[6gartrrlon -+ - apy)]
' J

where ), runs over all permutations P of the
arguments a; -+ a, p(P) being the parity of the
permutation; the upper sign is to be taken for Bose
statistics [2J + I even; see discussion following
Eq. (3)], and the lower for Fermi statistics. These
annihilation and creation operators satisfy “ele-
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mentary-particle” commutation or anticommutation
relations

[@a) Bsla = [aa, a3la = 0,  [@a, G5l = 8.5. (16)

Equations (12)—(16), as well as all subsequent equa-
tions, are valid for either discrete or continuous
indices; in the continuum case .. is to be inter-
preted as [ da, 3.4 as a Dirac delta function é(a — B),
ete.

A Hamiltonian of the form

H = Z}M%) + 2 Hla) (17)
p= p<e
acting on wavefunctions of the form c¢(ay - a,)

is transformed to the quantized-field representation
by the familiar formula

H= Y alHoa., + 3 X alasHoBas.. (18)
a af

Comparing (17) with (9) and (10), one sees that,
for our many-atom Hamiltonian, the single-atom
and two-atom operators H(e) and H{af) are inte-
gral operators whose action on arbitrary functions
fe and f.s of @ and B are

H)f. = ; [@ T8 + (@ |V]B)fs )
H(@B)fup = Z; (@B |V]¥8)fys.

Hence (18) becomes

H=T+V,+ V', T=3 (a|T|Balas,

af
Vo= 2 (@|V]fasa, 20)
V=

3 ;5 (@8 | V] vd)alazasa,,
afly

where the matrix elements are defined by (11). It is
clear on physical grounds that

Ho=T+ 7, 1)

must describe a system of noninteracting atoms.
In fact,

@[T 8) + (@|V]B) = E.be (22)

is just the necessary and sufficient condition that
the ¢. be single-atom energy eigenfunctions with
eigenvalues E,; hence

Hy = EEaa;a.,. (23)
H, is the patural starting point for a perturbation
treatment of a system of atoms.

It is clear from a comparison of (7) with (10)
and (20) that the nucleus and electron exchange

M. GIRARDEAU

operators I,,, and I,;., are given in the quantized-
field representation by

Luo = 3 2 (08 |Low] vO)asasa:0,,
afrd . (24)
Ie[ec = % Z (043 IIeIec! 75)a:za§a3a?g

afByd

with matrix elements given by the exchange inte-
grals (6); the subsidiary conditions (7) selecting the
physical n-atom state vectors & are

Lw® = (=1)"$n(n - 1),
Ie]euq) = —%n(n - 1)@:

where J is the nuclear spin. It is readily verified
with the aid of (6) that I,,, and I,., are Hermitian,
and thus may be regarded as observables whose
eigenvalues for physical n-atom states are given by
(25). It can furthermore be shown that they com-
mute with all observables,” and therefore establish
a superselection rule’: There are no nonvanishing
matrix elements of any observable connecting the
subspace of physical n-atom states with unphysical
subspaces.

The zero-temperature n-atom problem is that of
finding the simultaneous eigenstates of H, of the
total atom-number operator

N = Y alaa,
(-1

with eigenvalue n, and of I,,, and I, with eigen-
values (—1)* 4n (n — 1) and —3n (n — 1), re-
spectively. In order to see how I, and I, could
be handled in & practical problem, and to clarify
their relation to the intuitive picture of overlap
forces, it is best to generalize at once to the non-
zero-temperature case, deriving the thermal-equilib-

7 It follows trivially from (24) that Iy and Iee COm-
mute with the total atom-number operator N[Eq. (26)]. To
prove that it commutes with other observables, it is best
to return to the representation in terms of many-nucleus,
many-electron wave functions Y(X; -+ X2y -+« Zia)
According to (4), (5), and (7), Taye and ey are given in this
representation by

(25)

(26)

Inuc‘p(Xl e Xpxy oo Itln)
= Eﬂ ¢'(X1 A Xp—quXp+1
p<a
o Xge1XpXgpr oo

D. &% TR TH S
Ielec‘!’(Xl e anl e -Trin) .
”
= 3 (X1
»Ra
T lp-141T g 142 "~ wln)-
Bince Tuye and Iew, operate on different arguments, they
commute with each other. It is furthermore clear that they
commute with any operator which is a symmetric function
of the X and of the z;. Since this is the case for any observ-
able, e.g., for the Hamiltonian (8), Ty, and Ieje. commute
with all observables.
8 G. C. Wick, A. 8. Wightman, and E. P. Wigner, Phys.
Rev. 88, 101 (1952).

« Xozy v - Tip~1Tlgml4+10 Ip~142



MANY-BODY PROBLEM FOR COMPOSITE PARTICLES

rium properties of the system from a suitable
generalization of the usual grand partition function.
Since the controllable® constants of the motion'
are H, N, I, and I,,.., the appropriate density
operator is

P = E_l exp [—ﬁ(H - “’N + 'YnueInuo + 'YaleuIelee)],
(27)

where = is the generalized grand partition function:

E = Tr €xXp [—ﬂ(H - “N + 7nunInue + 'YelaoIeleo)]‘
(28)

Here 8 = (xT)™" with « Boltzmann’s constant and
T the absolute temperature, y is the atomic chemical
potential, ¥.,, and 7v.1., are Lagrange multipliers
associated with the subsidiary conditions (25), and
the trace is over the whole space of both physical
and unphysical many-atom states generated from
the vacuum by the atomic creation operators a..
The thermal average of any observable O is given by

(0) = Tr (0p). (29)

The parameters g, Yaue, and Ye10. are determined by
the coupled equations

_(aW/aﬂ)ﬁ.'ynuu.'/uu = <N> =n,
(OW /3 auo)urvo100 = (Inuc> = (_'1)2"%"("' - 1),
(aW/a'Yeleo)ﬁ-M"vnu = <Ielec> = —%nn - 1): (30)

where the subscripts denote, as usual, the quantities
held constant in the differentiations, and W is the
generalized thermodynamic potential related to = by

E=e*". (31)
The density operator p describes an open system
in which N, I, and I,,., undergo small fluctuations
about their mean values specified by the right sides
of Egs. (30). The system is, however, “open’ in
a more general sense than the usual one, since the
fluctuations of I.,, and I..., although partly due
merely to the fluctuations of N, are also due partly
to temporary excursions into the unphysical part
of the many-atom state space. In analogy with the
usual relationship between the canonical and grand
canonical ensembles, one expects that the proba-
bility distributions of the eigenvalues of N, I,
and 7... will be very sharply peaked about their
mean values for large n, and in fact that the prop-

? A. 1. Khinchin, Mathematical Foundations of Statistical
Mechanics (Dover Publications, Inc., New York, 1949), p. 51.

10 Tn some cases one would want to introduce additional
commuting and controllable observables, e.g., the total linear
momentum. The necessary modifications in such cases are
obvious.
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erties of the system derived from (28) will agree
in the limit [n > «, @ > «, (n/Q) — const] with
those that would be derived from a generalized
canonical partition function tr ¢ *® in which the
trace is restricted to eigenstates of N with eigen-
value n which are also physical n-atom states, i.e.,
satisfy (25) as eigenvalue equations. In faet, it is
shown in the Appendix that the eigenvalues of I,
and I,,, for n-atom states all lie on the interval
—in (n — 1), +3n (n — 1)]; hence if the fluctua-
tions of N are negligible and the mean-value con-
ditions (30) are satisfied to leading order in n, then
the fluctuations of each I will also be negligible, since
this is the only way the mean value could lie on one
end of the range of eigenvalues.

The terms Yaueluwe a0d Yoreolores i (28) have the
same general structure as the interatomic inter-
action V’ [compare Egs. (20) and (24)]. This is the
mathematical expression, for the many-atom prob-
lem, of the familiar picture of the strong short-
range interatomic repulsion as arising from overlap
of electronic shells. One expects on physical grounds
that, at low and moderate temperatures and pres-
sures, the nuclear exchange interaction will be neg-
ligible compared to the electron exchange inter-
action so that |Yaue| K [Ye1eo|, and furthermore that
the electron exchange interaction, and hence v,
will be almost independent of temperature. At tem-
peratures and pressures high enough that inter-
penetration of atoms is probable, one expects that
Yauo 80d Vo100 Will be of the same order of magnitude
and both will be temperature-dependent.

We conclude this section by examining the nature
of the coordinate-space interatomic interactions im-
plied by the structures of the Coulomb interatomic
interaction Hamiltonian V” and the exchange inter-
atomic interaction ‘“Hamiltonians” vawelme and
Yoteoleteo- This is facilitated by introduction of
annihilation and creation operators for localized
atoms by a generalization of the usual procedure
for elementary bosons or fermions. We denote by
(k&) that particular single-atom index o which con-
sists of the center-of-mass translational wave vector
k and the set @ of all internal quantum numbers
necessary to specify the atomic wavefunction in the
center-of-mass system, and define

ﬂ—i Z eik .raka
k

where Q is the volume of the system; the allowed
values of k are determined by periodic boundary
conditions (all components of k are integral multiples
of 27Q7%). Then it follows from (16) that

Ya(r) = (32
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[Va®), ¥30)]. = [¥i(D), ¥30)]. =
[Va(@), 3]

— 9—1 Z eik-(r—r’)aﬁﬁ

k

= o(r — r')és5. (33)
These differ from the commutation relations for
elementary bosons or fermions only in that @ and 8
contain other quantum numbers in addition to spins;
thus the atoms behave in this representation like
point particles with internal degrees of freedom. The
inverse transformation to (32) is

sz"fd‘ TS (D). (34)
Substitution into (20) gives
f dgl'l e d3r4v&§.75(r1 A r4)
aﬁ?&
X Yae) Y@ ¥s)¥s @),  (35)

with

vaivs(rx ceery) = o 2:1; (ka, kzg |V[ kv, k45)

peeeky

x ei(k,-n-l-kz'r,—k,-r,—

KL (30)

Similarly, it follows from (24) that the exchange
interactions Yaueluwe a0d Yereolo1os are given by ex-
pressions differing from (35) only through replace-
ment of v:555 by va,g.,,, or v3s5;, defined by replacing
V in (36) by Yauelnue OF Yereclotec

In the case of real atoms, the potentials V in (11)
are Coulomb interactions;

V(X X,) = (Ze)z/[R:‘ - Rkla
Vizm) = €'/lt; — r.],
ViX2) = —2Ze/[R; — 14].

To simplify (35), we introduce the center-of-mass
decomposition of the atomic wavefunctions;

'k ‘R - (E&r] “en

@7

(38)

where @; is the wavefunction in the center-of-mass
system; to avoid nonessential complications we
neglect finite-nuclear-mass corrections and hence re-
place the center-of-mass position R, .. by the
nuclear position R in the translational wavefunction
Q de™*Re-m A straightforward derivation making
use of translational invariance of the ¢4, complete-
ness of the exponentials, and the relation I = Z
following from electrical neutrality gives

v =1 T [ ervievie)
aByB
X vagss — )Y ¥; (@),

oxa(Xz o0 xy) = z1),

(39
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with

Vapsit — ') = (Ze)® f i Xz, --
X(R-R +r—-0["+ —tf+r—-r|"
—-R-=r+r—r¢|"— | -R +r—1r|"
X @5(Xzy -+ 2)@s(X'z] - - - 27)5(R)SR’)

X dX dz, --- dx, dX’ dz| - - dx!.

)@ §(X'a] - - - 2])

(40)

Equation (39) has the same structure as the usual
expression for the two-body interaction Hamiltonian
in position space, except that because of the internal
degrees of freedom of the atoms the usual inter-
action potential »(r — r’) is replaced here by a
potential matrix v,5;5(r — '), indexed by the initial
and final internal quantum numbers of the pair of
interacting atoms; the elements diagonal in these
indices (those with ¥ = @ and § = B) describe
elastic scattering whereas the off-diagonal elements
describe inelastic scattering. The exact expression
for V' including finite-nuclear-mass corrections dif-
fers only in that 8(R) and 8(R’) in (40) are replaced
by 8(R.....) and 6(R] . ). A similar derivation gives
for the nuclear exchange interaction

Z f &r dr'yl 0¥’

'Ynue nue
aﬁys

X vig5s — )Y@y,  (41)
with
A O =10 SR
X opX'x] - w)p;(X" +1 — 1,2, -+ 7))
XeX +r—r,z - z)dR)R)
X dX dz, --- de; dX' dx! - - dx!, (42)

where, e.g., X + r — r’ is a symbolic expression for
(R 4+ r — 1, s) where X = (R, 0), o being the
nuclear spin variable which is summed over as
part of [ dX. The electron-exchange interaction is

vawow = 3 T [ dcdeviovie)

apyé

X 0555 — )Y@,  (43)
with
B = 1) = oo [ $E(Xay - )
o5(X'x] - DX, 2l + 1 — 1,2, -+ 7))
XX oy +1r— 1,25 - ) SR)R")
X dX dz, - -+ dz, dX’ dx! - - - dx). (44)
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It is to be noted that the arguments of ¥, and ¥;
in (41) are interchanged relative to their order in
(39), whereas they have the normal order in (43).
If finite-nuclear-mass corrections are included then
the nuclear and electron exchange interactions can
no longer be exactly written in the forms (41) and
(43), but have the more general structure of (35);
nevertheless, v35;; (f, - - - 1,) is sharply peaked about
r; = 1, and 1, = 1, and vy (r, -+ 1,) about
r;=randr, = 1,

The potential matrix v,53(r — ') does not
directly contain the contributions of dispersion
forces such as the van der Waals interaction; in-
stead, as in more familiar formulations,'* these arise
from certain terms of second and higher order in
V'’ in an evaluation of the energy. In order to make
this point clearer let us consider the leading terms
in a perturbation calculation of the ground-state
energy. The unperturbed n-atom ground state can
be written in the Bose' case as

&, = (n) }ao)" [0), (45)

where |0) is the vacuum [corresponding to a state
vector ¢ in (12) for which ¢, = 1 and all other ¢;
vanish], and ag creates an atom in the single-atom
ground state ¢o(Xx, -+ z;). It then follows from
(39), (32), and (16) that the first-order perturba-
tion energy is just

(Po, V'®) = nln — ne’ f”oooo(r) d37', (46)
the number of atomic pairs times the space-averaged
static Coulomb interaction energy of one pair; this
is a repulsive energy and does not contain any of
the van der Waals interaction. In second order there
are two types of excitation processes to be con-
sidered: the elastic processes in which two atoms
in their ground states ¢, interact and emerge with
nonzero equal and opposite momenta =k but still
in their snternal ground states, and the inelastic
processes in which the atoms emerge not only with
momenta +k but also #niernally excited. The elastic
processes give a correction to (46) which is of the
same form as the second-order perturbation energy
for a system of structureless particles, and need
not be considered further here; the inelastic processes
give the van der Waals interaction. Indeed, ex-
panding v; oo in inverse powers of [r — 1’|, one finds

1 See e.g., L. I. Schiff, Quantum Mechanics (McGraw-Hill |

Book Company, Inc., New York, 1949) pp. 174 ff.

12 The calculations are more complicated in the Fermi case,
but the complications are associated with iranslational de-
grees of freedom, whereas the van der Waals interaction is
associated with virtual excitation of 4nternal degrees of
freedom.
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|r _ r/l3

_3m—wm—mm—wm~ww
e =1
X @o@ebd + -+, (47)

where the integration variables and arguments of
the ¢ and & functions are the same as in (40). The
factor

%ﬂm—mm—w>

e -

_gle =) =R — 1)@ - R’)]}

!r _ rzls

is clearly the instantaneous dipole-dipole interaction
taking into account the indistinguishability of all
electrons in a given atom. The expression (47)
vanishes identically unless ¢, and &z both have odd
parity (we assume that @, has even parity), in which
case the corresponding contribution to the second-
order perturbation energy is nonzero, negative (by a
general theorem on second-order perturbation con-
tributions), and varies like [r — r|™°, the usual
van der Waals interaction.

In a consistent calculation to a given order of
perturbation theory, it would, of course, be necessary
to consider (V' + vuweluse + Yerecloree) as the
perturbation, rather than merely V’, in order that
the last two of Eqs. (30) be satisfied (to given order)
by the perturbed state vector. Thus the exchange
interactions also lead to dispersion forces. It follows
from the general properties of bound-state wave-
functions that v35,(r — r') and o2 (r — /) fall
off exponentially for large [r — r’|, and hence are
negligible compared to the van der Waals inter-
action at large distances. In an actual calculation
using the many-atom formalism of this paper one
need not (and usually should not) make any explicit
calculation of the dispersion forces, but in treating
physical situations where dispersion forces are not
negligible (e.g., liquid He® or He*), it would be
important to include those terms in (V/ + v, Joue +
Yelool o100) which are off-diagonal in the internal
indices &, B, ¥, §, or at least the matrix elements
from the ground state to the first (internally) excited
state.

3. ALTERNATIVE DERIVATION BY DYSON’S METHOD

In this section we shall give an alternative deriva-
tion of the atomic second-quantization formalism
by a method analogous to that developed by Dyson’
for treating the problem of spin-wave interactions,
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subsequently adapted to the fermion-pair “quasi-
boson” problem by Blatt and Matsubara.* This
alternative derivation is valuable both because it
establishes contact with past work,®* and because
it furnishes added insight into the significance of the
exchange interactions Yauelnue 80d Yereoloteo-

We begin by introducing the usual annihilation
and creation operators ¥(X) and ¥1(X) for localized
nuclei, and ¥(z) and ¥¥(z) for localized electrons,
which satisfy the commutation relations

X)¥(X') — (- HX)¥X)] = 0,
HX)T'(X) — (—D)*F(X)¥(X)] = §X — X),
[¥(z), ¥(@)]. = 0, [¥(@), ¥'@)]. = 8@ — o),

W(X), ¥(@)]- = [¥(X), ¥'@)]- =0, (48)

and their Hermitian conjugates. The nucleus—
electron vacuum |0) is defined by

010 =1, ¥X)|[0)=1¥@)|[0)=0. (49

The single-atom states ¢.(Xz, --- ;) transform
into this representation as state vectors |a) of the
form

I

l) = 4. |0), (50)

where the physical atom creation operator A is
defined as

al=ay? [ X da - doyou(Xay o 3)

X V(X)) - V@) (51)

The normalization constant (I!)~? is chosen so that
the states |a) are properly orthonormal:

(@] B) = (0| Aeds [0) = .4, (52)

the annihilation operators A, being defined as
A. = (AN1; Eq. (52) is readily checked by evaluat-
ing the vacuum expectation value by Wick's
theorem™ and using the antisymmetry of the ¢,
in the electron variables.

The natural definition of an afomic product state
representing » noninteracting atoms is now

AL, e+ AL, |O). (53)

It is rather obvious (and will presently be proved)
that the set of all such states spans the space of all
n-nucleus, In-electron states.'* In fact, for n > 2

the set of all n-atom product states will turn out to .

13 A. Houriet and A. Kind, Helv. Phys. Acta 22, 319 (1949);
G. C. Wick, Phys. Rev. 80, 268 (1950); F. J. Dyson, Phys.
Rev. 82, 428 (1951).

M Ag always, the definition of completeness is not absolute,
but relative to the boundary and regularity conditions.
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be redundant, i.e., overcomplete, and nonorthogonal.
Although

[Aa, Agle = [AJ, 45]. = 0, (54)

where the commutator or anticommutator is to be
taken depending upon whether 2J -+ [ is even or
odd, the annihilation operators A, do not satisfy
simple Bose or Fermi commutation relations with
the creation operators A;; this is responsible for
the nonorthogonality and overcompleteness of the
atomic product states (53), and causes serious mathe-
matical difficulties in working with these states. The
situation is very similar to that encountered in the
theory of spin-wave interactions.® There is an
obvious physical definition of spin-wave creation
operators, but the spin waves are not bosons and
the spin-wave product states form a nonorthogonal
and overcomplete set. Dyson solved the overcom-
pleteness problem by deriving an exact formula for
the partition function as a sum over a nonorthogonal
and overcomplete set. We shall proceed in a dif-
ferent fashion, by introducing subsidiary conditions
which remove the redundancy, a method which is
much simpler for our problem and also directly
related to the derivation in Sec. 2. Dyson solved the
problem of the complicated commutation relations
by introducing an ideal state space, in one—one cor-
respondence with the space of physical product
states, in which the commutation relations were of
the simple Bose form, and in which all calculations
could be performed once the formula transforming
the Hamiltonian in the physical state space into
that in the ideal state space was derived. In this we
shall follow Dyson, introducing a space spanned by
ideal atomic product states in which the ideal atomic
annihilation and creation operators satisfy simple
Bose or Fermi commutation relations. It will in
fact turn out that this ideal state space is identical
with that employed in Sec. 2.

We start by showing that the set of all physical
n-atom product states (53) is not a linearly inde-
pendent set, i.e. that there exist linear relations
between these states; it will then follow from their
sufficiency (which will be proved) for spanning the
n-nucleus, In-electron space that they form an over-
complete set, since if they were merely complete
they would be linearly independent. Consider a
general linear combination ® of n-atom product
states:

&= 3 cloy - a)dh, oo AL |0),

@yreran

(55)

where the coefficient function ¢ is symmetric or anti-
symmetric depending upon whether 2J 4 [ is even
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or odd.” We shall show that in general there exists
another coefficient function d, with d(ey -+ a,) #
c(a, - - a,), leading to the same state . We proceed
by construction. Pick any pair (p, ¢) with 1 < p <
g < m, write out the explicit expression for AL,AL,
following from (51), and interchange the two nucleus
creation operators; this gives

AL AL, = (—1ay™
X f dX dx, - - dx, dX’ dz] - - - dzf 0., Xz, -+ - 7))

X aX'z) - 2P (XN (2) -+ (@)
X ¥'(X)¥' () --- V(). (56)

Next, use completeness of the ¢, (hence of the ¢¥)
to expand

1 46 L ACHIERE ACH
D SR CRIPTY PN
X ¥V @) - ¥y dY dys -+ dy,
= )7 XL k(X' - 2)AL,
¥(X)¥' @) - (@)

= ()7 Xseh(Xal - 2D Ap. (57)
Thus, by (6),
A:er:(!a = (_1)2J Zaﬂ (aB IInucI anaa)A:A;' (58)

Finally, in the expression (55) for ®, move Af,'
to the left until it is adjacent to 4 l,, thus introducing
a factor (&=1)*"?"}, substitute (58), interchange the
dummy indices (aB) with (a,e,), and move AL,,
back to its original position, thus canceling the
factor (£1)*"*"*; this gives

= X de - adde o An[0),  (59)
with o
dlay -+ o) = (=1 2 ap (@0 [Lae| @)

X elon -+ 0 1Qpa1 ** Ae1Blgsr <+ ¢ ). (60)
Since d(a; ++ an) # cley -+ a.) in general, this

shows immediately that the set of all n-atom product
states (53) is not linearly independent,'® as is in

15 This symmetry or antisymmetry assumption is not
essential since, because of (54), only the symmetric or anti-
symmetric part of ¢ survives the summation. However, we
shall assume symmetry or antisymmetry because this greatly
simplifies the algebra. .

16 One has the dependence relation

2z [c(al crean) — d(a1 e ap)]
X AL, AL =8 - 3=0
an) — d{ar -+ on) # 0.

c(ay ---
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fact already clear from (58). One can similarly show
that

®= 3 el a)d, o Ao, [0)  (61)
with
e(al e an) = - Euﬂ (apaq ]Ie]ecl aﬂ)

Xclay *+ - @@y * @q1fetgr -+ ar), (62)
and in general e(e; -+ «,) # cle; -+ a,). Other

similar relationships, found by interchanging more
than one pair of creation operators between A,
and A:,' before expanding as in (57), or even by
permuting creation operators between more than
two A operators, are not independent, since any
permutation is a product of interchanges.

For the special case of functions c¢(a; -+ a,)
satisfying the subsidiary conditions (5) [or equiva-
lently (7)], the above construction of linear relation-
ships between the atomic product states fails be-
cause the functions d(e; --- a,) and e(a; -+ a,)
turn out to be identically equal to ¢(e, - - a,).
One may therefore anticipate that these subsidiary
conditions may just suffice to remove the redundancy
of the expansion coefficients in an expansion such as
(55), but without destroying the completeness of
the set of all such states for which the expansion
coefficients satisfy the subsidiary conditions. We
now prove this conjecture. We first prove com-
pleteness, i.e. that any n-nucleus, In-electron state
® has an expansion of the form (55) with a coeficient
function c(a; - «,) satisfying the subsidiary con-
ditions (7). One knows that any n-nucleus, In-
electron state can be expanded in the form

b = del "'andzl"'dxln'l/(Xl "'anl "'xln)

X (X)) - VX @) - V(@) [0), (63)

where ¢ is the Schrodinger wave function. But if
{a} is any complete set of one-atom wavefunctions
satisfying the same boundary and regularity condi-
tions as ¥, then ¥ can be expanded in terms of prod-
ucts of the ¢, according to (2), with coefficients
c(oy +++ a,) given by (3). Substituting (2) into
(63), making an appropriate permutation of the y'
operators, and using (51), one obtains precisely (55)
apart from an additional factor (I)** and a possible
overall minus sign; these factors can be absorbed
by renormalization of c¢(e; -+ a,). It is a trivial
exercise to verify that the resultant ¢(ey -+ a,)
satisfies the subsidiary conditions (7), which were
in fact originally derived from (4) and (2). Finally,
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we prove uniqueness, i.e. that for given ® there
exists only one coefficient function ¢(e; -+ a,)
satisfying both (7) and (55). We proceed in the
standard fashion for uniqueness proofs, except for
the complications entailed by the lack of inde-
pendence of the states (53). Thus we suppose (7)
and (55) to be satisfied by both ¢(a; --- «,) and
¢(a; -+ a,), and let A(ey - -+ a,) be the difference
between ¢ and ¢’. Then A satisfies (7), and further-
more,

S Al - aw)An, - AL 0 =0;  (69)

we shall show that then A(a; --- «,) = 0, ie.
clay +++ ) = (o) -+ a,). Insert (51) into (64);
this gives

del oo dX, dz, - dxy, [E Aley -+ a)
X pa X2y - Z1n)]
X ¥(X) - VX @) - @) 10) = 0. (65)
It then follows by multiplication by
O] ¥(@l,) - ¥E)¥(X7) - - ¥(X]),
and use of Wick’s theorem, that

8 E A(al

¢a.(anlﬂ—l+l

xl) ° ‘Pun(Xﬂxln—l+1 "ot

an)¢a1(Xlxl cee ) e

s my) =0, (65)

where $ antisymmetrizes its operand with respect
to permutations of the z; and symmetrizes or anti-
symmetrizes it with respect to permutations of the
X,, depending upon the nuclear statistics. But it
follows from the fact that A satisfies (5) [or (7)]
that the operand of 8 is already properly sym-
metrized and antisymmetrized; indeed, Eqgs. (5) were
derived as the necessary and sufficient conditions
that an expansion of the form (2) be properly sym-
metric and antisymmetric under exchange of nuclei
and electrons between atoms (symmetry and anti-
symmetry under exchanges within an atom is, of
course, automatic). Hence (65) reduces simply to

Z Aley -+

c ), (XaZy ) oo

CauXoZra-141 - xln) = 0. (66)
It then follows from (1) that
Aley -+ @) =0, (67)

the desired result.
In summary: the problem of the redundancy of
the physical atomic product states (563) is solved
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by the introduction of precisely the same subsidiary
conditions (7) as were introduced in Sec. 2 for the
purpose of ensuring the proper statistics under ex-
change of nuclei and electrons between different
atoms; this is no accident, since the redundancy
results precisely from the possibility of such ex-
changes.

In order to solve the problem of the complicated
commutation relations between the 4, and the 4;,
we define, in analogy with Dyson’s spin-wave treat-
ment,’ an ideal-atom state space 3Ciq.;. We first
define ideal-atom annihilation and creation opera-
tors a, and a] by their commutation relations

la, agla = [al, a;]* = 0; l[a,, a;]* = Oap, (68)
together with the condition
a. [0) = 0; (69)

where |0) is the (normalized) ideal-atom vacuum
state; commutators or anticommutators are to be
taken in (68) according to whether the 4. commute
or anticommute, i.e., according to whether 2J -+ 1
is even or odd. Denote by 3¢ the physical many-
atom state space consisting of the union, as # runs
from zero to infinity, of all the n-nucleus, in-electron
spaces. Any state ® in JC can be represented in
the form

3

¢ = 2 z C,,(Oll'

n=0 ai***an

ca)Au, o An [0),  (70)
with coefficient functions ¢, which are made unique
by imposition of the subsidiary conditions (7). Given

any ®, we define its correspondent ®;4,, by

S Y e -o-adal, - ah [0), @)

n=0 a,**ran

Digear =

with the same coefficient functions ¢,, and define
the ideal-atom space 3Ci4.a; to be the set'” of all
such states ®;4..1 as ® runs over all of 3C. This
establishes a one-one correspondence 3¢ <> 3¢;4.,;.
The subsidiary conditions are essential here, since
without them one state in 3¢ would have many
images in 3Cigear due to the fact that the expansion
(70) is only made unique by imposition of the
subsidiary conditions; thus 3C4..; is not the space
of all linear combinations of ideal-atom product
states a.,, - - - al, |0). Indeed, the ideal-atom product
states themselves are not contained in 3¢;,.., (except

17 That #igear is & vector space, and not merely a set,
follows from the linearity of the subsidiary conditions 7)),
which implies that any linear combination of states of the
form (71), with ¢,’s satisfying the subsidiary conditions, is
also a state of the same type.
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in special cases’) for n > 2. In this respect, our
treatment differs from that of Dyson. Nevertheless,
in actual calculations it is convenient, and usually
essential, to consider initially the whole state space
generated unrestrictedly from |0) by the a., only
imposing the subsidiary conditions in the sense of
(30) or to a given order of perturbation theory.

The correspondence between operators O on 3C
and those 0;4ea1 0N 3,40.1 Is determined by expressing
0% in the form (70), using (71), and identifying the
result as some operator Oig.,; acting on ®;40,. The
procedure to be followed for any observable is
illustrated by the case of the Hamiltonian H, which
is expressed in terms of nucleus and electron creation
and annihilation operators as

H=T+7V,

T = f 4X ¥ (X)TX)W(X) + f dr V'@ T(2)¥),
V=1 f dX dX’ WX (X) VX X)X )¥(X)
+ % f dz dz’ ¥ () (@) V(zz Yo (2')¥(z)

+ f dX dx ¥'(X)' (@) V(X)W (@)¥(X), (72)

where the single-particle operators 7' and two-
partiele operators V are the same as in (8). Since H
conserves both electron and nucleus numbers, it is
sufficient (because of linearity) to obtain an expres-
sion for H®, with ® given by (55), as a state of the

same type as ®. One can furthermore first consider .

the operation of H on a single typical atomic
product state (53). Expressing HA. --- Al in
normally-ordered form with the aid of Wick’s
theorem' and noting that ¥(X) and ¥(z) anni-
hilate the vacuum, one obtains an expression for
HAL, --- Al_1|0) involving only creation operators
¥t acting on the vacuum; upon expressing these in
terms of the 4] with the aid of (1), one obtains
the desired expansion of HAL, --- A._10) in terms
of atomic product states, which can finally be sub-
stituted into H®.

Consider first the single-particle part, T, or H.
Contracting annihilation operators in 7 with creation
operators in A, Al according to Wick’s
theorem, one finds by (72), (51), and the anti-
symmetry and symmetry of the ¢, that

18 K.g, for a system of (“elementary’”’) identical non-
interacting bosons with periodic boundary conditions, the
states (aot)»|0) satisfy the subsidiary condition for arbitrary
n if one considers “atoms’’ consisting of two (noninteracting)
bosons, since the ground state o X X’) is then just the con-
stant Q! where Q is the quantization volume.
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TAu, -+ Au=2 Au - Ao, M, AL, - AL,
p=1
4 (terms with ¥ operators on the right), (73)
where
M, =y f X dz, - dz,

X V(X @) [TX) + IT(x)]

X paXzy - 2)¥(z) -+ ¥'@). 79
Expanding [T(X) + IT(@)]e.(Xz: - -+ z;) in terms
of the ¢s(Xz, --- z,) and using (51), one finds

M, = 228 IT) )4y, (75)

where (8 |7 a) is defined by (11); hence,
TAu, - 4n10) = Zo 2 @[Tl a)Au, - AL,
p=1

X AJAL,,, -+ AL 0).  (76)

Consider next the two-particle part, V, of H.
There are two different types of terms arising when
one makes contractions of V with 4% ... 4.
The first type arise from contractions of both an-
nihilation operators ¥ in a produet ¥'WI¥¥ with
creation operators ¥' in the same A operator, and
the second from contractions which couple two At
operators, i.e. in which the two ¥ operators are con-
tracted with ¥ operators in different At operators.
The first type can be handled by a derivation com-
pletely parallel to that of (76); the second type is
more complicated, but reducible by an obvious
generalization of the simpler derivation. We give
only the result:

VAL - AL [0) = (Vo + VAL, --- AL [0},

Vodl, -+ AL, [0) = X, ); (@ |V]e)AL,

. Al,-,A:ALw e Aln IO)!

VAL - AL O = a5 Z @B |V]aa)AL,

.o Al

Ap—

Al o A AA g, - ALIOY, (77)

where the matrix elements are given by (11). Sub-
stituting (76) and (77) into (55), one finds

Hd = 3 [Heley --- a)]AL, -+ AL, 10),
Heley -+ - a,) = Tela, -+ - a,)
+ Vuc(ax M an) + V,c(al et aﬂ)) (78)
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where T, V,, and V” are defined as operators on the
coefficients ¢ by (10). Because of (68), there are many
different expansions of HA!, -+ Al |0) in terms
of the AL, .-+ A! , |0), the particular expansions
(76) and (77) being distinguished only by their
simplicity. Nevertheless, it follows from the sub-
sidiary conditions (7) on ¢ that He is the unique
coefficient function for H® satisfying the subsidiary
conditions [see discussion following Eq. (25)]. Since
(78) holds for all n, one has then, by (71),

HysonBiaon = 2 [Herler -+ a)lae, +++ aen 0). (79)
If one now asks what operator H 4.1, expressed as
an explicit function of the a, and a] operators,
leads to (79) with the expressions (10) for Te¢, Ve,
and V’c, one finds precisely the expression (20) of
Sec. 2. One can similarly show that the subsidiary
conditions can be expressed in 3Ci4em in the form
(25) with the exchange operators given by (24).
Finally, the total atom number operator'®

Ny= f dX ¥(X0¥(X) = I f iz v @@ (80)

in 3 transforms into HCigen 85 Q.o @o@a, the same
expression as given in Sec. 2 [Eq. (26)]. Because of
the linear independence (in fact, orthogonality) of
the ideal atomic product states al, --- aL, |0),
these operators in 3C;4..; are uniquely determined by
their correspondents in 3C; the subsidiary conditions
on ¢ley ++- «,) are essential for this uniqueness.

If L is any observable, then the eigenvalue
equation

Ld = AP (81)
in 3C transforms into JCiz..; 88
Lidulq)idenl = k‘I’mml; (82)

where ®,4,.1 8nd L. are the unigue images in
3C;4es1 Of the state & and operator L in 3¢, determined
by the above procedures. In order to verify (82),
we write (81) in the form

Feo

>3 (e

n=0 ay**ra
— Nealon - a)]AL, - ALJOY =0, (83)

where L is defined as an operator on ¢ by equations
analogous to (78) and (10). Since ¢, satisfies the
subsidiary conditions, so does Lc, — \ [see discussion

19 The correctness of this expression can be inferred from
the fact that each atom contains one nucleus and [ electrons,
or more precisely, from the fact that 3¢ is the union of all
n-nucleus, In-electron spaces for n from zero to infinity; the
two given expressions for N are equal on this space 3C.

o)
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following Eq. (25)]. It then follows from (64)-(67)
that

Lcn(al e an) - )\cn(a‘l e (1,,) = O) (84)
hence
Zo Z [Lealoy - -+ o)
— Ao -+ @)lan, o au, [0) = 0, (85)

where the zero on the right side is, or course, the
null vector in 3;4ear; Eq. (85) is equivalent to (82).
Again, the subsidiary conditions on ¢ are quite
essential for the validity of (82); without them (84)
would not be a necessary consequence of (83).

In summary: the formalism of this section, based
on an analogy with Dyson’s treatment of spin-wave
interactions, turns out to be completely equivalent
to the less abstract formalism of Sec. 2. The sub-
sidiary conditions (7) [or, as an eigenvalue equation
in 3Ciqem, (25)], which were invoked in Sec. 2 to
ensure that an expansion such as (2) have the
correct symmetry properties under exchange of
nuelei and electrons between different atoms, appear
here in a new guise, as the necessary and sufficient
conditions for a unique expansion (55) of a state of
3 in terms of the overcomplete set of atomic product
states (53). This is necessary for a wunique tran-
scription of states and operators into 3C;a..;, hence
for a correct transcription of eigenvalue equations.
The identity of the subsidiary eonditions in Sec. 2
and in this section results from the fact that the
redundancy of the physical atomic product states
(53) is a direct result of the possibility of exchange
of electrons and nuclei between different atoms.

4. APPLICATION TO SYSTEMS OF IDENTICAL
PARTICLES

In this section we shall apply the general formalism
to systems of identical particles, considering “atoms”
composed of two identical particles. In addition to
providing an illustration of the general formalism,
this will enable us to make contact with related
work of Blatt and Matsubara® and to obtain new
results concerning Bose condensation of fermion
pairs in a superconductor. -

We consider a system of identical particles de-
seribed in the usual second-quantization formalism
by a Hamiltonian of the form

H = 3 bbid,
+ % Zkk’k"k"' v(kk'k"k’")b:b;,b;,'nb,‘,., (86)

where b, and b} create particles in the single-particle
states labeled by %, which will usually denote
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momentum in the Bose case or momentum and spin
in the Fermi case, although we are not restricted
to that particular choice of single-particle states.
The interaction v is completely general except for the
hermiticity and symmetry requirements

V(KR = oK EER),
v(kk'k" k""" = ok’ kk" k") = o(kk'k" k), (87)

the upper or lower sign being taken depending upon
whether the individual particles are bosons or fer-
mions. The “atomic” second-quantization formalism
can be introduced by either the method of Sec. 2
or that of Sec. 3; we choose the more elementary
and transparent method of Sec. 2. In order to apply
this method one must first express H in a 2n-particle
momentum-~— (and spin—)space representation. Given
any 2n-particle state ® in the quantized-field repre-
sentation, the corresponding 2n-particle momentum
wavefunction ¢(ky -+ k) is defined by the ex-
pansion

e=[@)N7? > ¥k kDb b [0 (89)
Operating on this equation with (86) and using
Wick’s theorem,” one finds that H is defined as an
operator on wavefunctions ¢ by

2n

Hyky -+« ko) = 2 ele) gy - Kan)

i=1

2n

+ Do 2 ok kR

i<l
>< 1//(’01 e ki—lkki-H e kl-lk’klﬂ ot an)' (89)

We next introduce any complete orthonormal set
of two-particle momentum wavefunctions ¢.(kk")
with the proper statistics, i.e. . (k'k) = xop.(kk'),
and_expand ¢ in terms of them:

Yy - k) = Z clon -+ o, (kiks)

a1*tean

X ¢a.(k3k4) e ¢an(k2ﬂ‘lk2")' (90)

The problem is now to transform to a second-
quantization representation in terms of pair anni-
hilation and creation operators a., a. satisfying
Bose statistics:

(91)

The derivation proceeds exactly as in Sec. 2, by first
expressing H as an operator on the wavefunctions
c(ay + -+ a,) by expanding (89) in terms of the ¢,
and then introducing second quantization in the
usual way. The final expression for the Hamiltonian
is of the form (20) with

t
[@a, as] = [ad, a] =0, [a., ap] = 8.
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@ [T18) = 2 2hus ki)l sllrk),

@ V] 8) = s Znurrar o2 (Rrka)o(akocki kL oa(RiS)

(@B |V]v9)

=4 Dy Dienr et 5 (ak)e (1R
X v(kikik! ks Yoo (k' k2) a5 K. (92)

The subsidiary condition analogous to (25) 'unposéd

on every allowable n-pair state & is
1o = +inln — 1P, (93)

where the plus or minus sign is taken depending on
whether the particles described by (86) are bosons
or fermions, and where the exchange operator I is

I =3 Xaps @B |I] vO)aiasaia,,  (94)
with
(a8 |I| vo) = ka Zkl'k.' oE(kik)ot(k1ks)
X ‘P-/(kl’kz)ﬂas(kx é) (95)

A second-quantization formalism for fermion pairs
has been derived previously, using Dyson’s method
of the ideal state space, by Blatt and Matsubara.*
However, these authors did not specify any definite
choice singling out one of the many different ex-
pansions of a given many-fermion state in terms
of the redundant set of fermion-pair product states
(see Sec. 3), i.e. they did not impose any subsidiary
condition. As a result, their definition (4.10) of
operators in the ideal state space is ambiguous.
Dyson® avoids the corresponding difficulty of the
redundancy of physical spin-wave product states
by using a formula for the partition function which
takes the redundancy into account, and an explicit
construction of the Hamiltonian in the ideal spin-
wave space which singles out one (no doubt the
simplest) of the many possible images of the physical
Hamiltonian. The problem of redundancy is solved
in our treatment by the subsidiary condition (93),
which, had we used the method of Sec. 3, would be
the condition making the correspondence between
states and operators in the physical and ideal state
spaces one—one. In the method of Sec. 2 the sub-
sidiary condition merely ensures that the wave-
function ¥(k, --- ks,) [Eq. (90)] be symmetric or
antisymmetric under particle exchanges between dif-
ferent pair wavefunctions ¢., but, as shown in Sec. 3,
this is equivalent to the more abstract interpretation
of Sec. 3.

The simplest possible illustrations of the general
formalism are given by the ideal Bose and Fermi
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gases, for which » = 0 in (86). The many-pair
Hamiltonian is then simply

H= Y . (|T| Balas.

In the Bose case the single-particle variables & are
to be interpreted as momenta k quantized according
to periodic boundary conditions, i.e. all components
integral multiples of 272! where Q is the volume
of the system, The noninteracting pair wavefunctions
¢.(KK’) in this case are simply

Squ’(kk’) = [2(1 + 6qq’)]_%(5kqak'q' + akq’sk ’q); (97)

(96)

where the two-particle quantum numbers o are
pairs (qq’) of single-particle momenta; note that
the states ¢qq- and @44 are identical, so that care
must be taken in sums over ¢, 3, ete. to avoid over-
counting. One finds

(@.9: IT| 9ig3) = [eqy) + e(qo)]
X [(1 + 5q,q.)(1 + 6‘]1’ﬂa’)]_*

X (o000 F 00aa'0ar)s  (98)
so that (96) becomes simply
H= Y [€2) + €2)1000.000. (99
where
2 an f(@8) =3 Z;an f@g.) + Zq, /@90,
(100)

f being any symmetric function of ¢, and q;. Simi-
larly, one finds for (93)

1+ 84,00 )0 + a0, |
I = % Zm,q,) Z(qx"la') [El + 6q;qz)z§ + 3:’0:‘):'

(101)

1 t
X Oq,0.%4,4:'%4: a5’ Qasas+

The n-pair ground state of the Hamiltonian (99) is
clearly

& = (n)7Has)" |0), (102)
since the aqq and aqq operators satisfy Bose sta-
tistics (91); we are assuming that (q) is & minimum
for ¢ = 0, as is the case for free particles with
«(q) = A’¢°/2m. In order that ®, be an acceptable
many-atom state it must satisfy the subsidiary con-
dition (93) (with the plus sign). When I acts on &,,
one or the other of the two annihilation operators
commutes through (a,)" and annihilates the vacuum
unless q; = @z = ¢/ = g} = 0. Thus one has simply

M. GIRARDEAU

1%, = %(030)20304)0

= %NOO(NOQ —_ 1)@0 = %ﬁ(’n - 1)@0, (103)

the desired result; here Ny = ag,a00, the zero-
momentum-pair occupation number operator. The
ground-state energy is clearly 2n¢(0), the well-known
result for an ideal Bose gas of 2n particles (n pairs).
On the other hand, the excited independent-pair
product states do not in general®® satisfy the sub-
sidiary condition, although they are eigenstates of H.
In order to satisfy the subsidiary condition for
excited states one would have to form appropriate
linear combinations of degenerate states®™ by con-
sidering, along with a given independent-pair state,
all other states formed by interchanging particles
(indices q or ¢’ of a,,. operators) between different
pairs. It is clear from (101) that 7 acting on such a
linear combination gives another linear combination
of the same type; the coefficients are to be chosen so
that one in fact obtains an eigenstate of I with
eigenvalue in(n — 1).

Consider next the ideal Fermi gas. The single-
particle variables k in (92) and (95) are then to be
interpreted as both momenta and spins, ie. k¥ =
(k, o). The pair wave functions ¢, (kk’) are

Waa'(kkl) = 2-%(5“61:’«’ - ‘Sku'ak'a); (104)

where each ¢ index also denotes both a momentum
and a spin. Equation (99) is essentially unchanged;
one has

H= 3 ) + €@)]tre.0a,

where (g:g.) denotes an ordered pair with q, % ¢..
Actual calculations are simplified if one writes

Z(aa’) = % Zéa‘; (106)

(105)

and interprets®™

Qgqr = —Qyeg,

(107)

since ¢q,- is antisymmetric in ¢ and ¢’. The analogue
of (101) is then

1 t t
I= 2z Z(a:qs) Z{ex’q:’) aql'csaqm’am'q:'aam.- (108)

Since the a,, and o, operators satisfy Bose com-
mutation relations, the n-pair ground state of H

20 An exception occurs for the states
Pq0 = [(n — 1) Hant)*agt|0)
with g # 0, which do satisfy the subsidiary condition.

* E.g., peither (aw')"'aqq’'0) nor (aw')"2aqetaqot|0)
satisfies the subsidiary condition, but one can form a linear
combination of these two degenerate states which does
satisfy the subsidiary condition.

2 A useful corollary of (107) is that ag, = 0.
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is that im which all n pairs are Bose-condensed into
the lowest pair state

eolkk’) = 27} 8,000(851 85, — 8510501, (109)

in which the fermions both have momentum zero,
but opposite spins. Denoting the corresponding pair
creation operator by a,, one sees that the n-pair
ground state of H is

) X(ao)" [0). (110)

But, in contradistinetion to the case of the ideal
Bose gas, (110) is not an allowable state of the ideal
Fermi gas, because it does not satisfy the subsidiary
condition (93) (with the minus sign).”® Of course,
we know that the correct ground state &, must,
in fact, be the usual one in which each allowed
momentum site within the Fermi sphere contains
only two fermions of opposite spin (we assume that
each fermion has total spin 1). However, before
application of the subsidiary condition, there is a
spurious degeneracy associated with the many dif-
ferent ways of pairing the particles within the Fermi
sphere. This degeneracy is removed by the sub-
sidiary condition; in order to obtain an eigenstate
of I one has to form a linear combination of states
with all possible pairings. Let us define the Fermi
sphere 8y to be the set of all £ = (k, ¢) for which k
is an allowed (by periodic boundary conditions)
momentum satisfying |k| < ke. For given kg, this
determines n, the number of allowed momentum
sites within the Fermi sphere.”* Denoting the 2n k
values contained in Sy, ordered in some arbitrary
but well-defined way, by k, -+ k.,, we then define

& = [0 2, (—1"P

X Py @ios, -+ Qugu_ian [0), (111)

where ., is a sum over all permutations P of
ky -+ ko, p(P) being the parity of P. Since the
state (111) is completely antisymmetric in k, - - - ks,
and the subsidiary condition (93) (with the minus
sign) is equivalent to such complete antisymmetry,
it is clear that (111) must be an eigenstate of I
with eigenvalue —3n (n — 1); this can be verified

2 In fact, it is not difficult to show with the aid of (106)-
(108), or directly from (94) and (95), that the state (110) is
an eigenstate of I with eigenvalue + in(n — 1). This is less
than the eigenvalue + in{n — 1) for the ideal Bose gas
because of the partial antisymmetry implied by (107).

2 This procedure ensures that the ground state be non-
degenerate. On the other hand, for given n there does not
always exist a kr for which there are eractly n allowed mo-
menta with |k| < kr; in such a case there is a real degeneracy
of the ground state with respect to the spins and angular
coordinates of the holes just under the surface of the Fermi
sea. We wish to avoid the irrelevant complications of such
a degeneracy.
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directly from (106)~(108).*° It can furthermore be
shown that (111) is the lowest such state; any state
lower than (111) must have multiple occupation of
some of the allowed k values within Sz, and hence
cannot be completely antisymmetrized as would be
necessary to obtain an I eigenvalue of —in (n — 1).
The excited states can be treated in a similar fashion;
again, the subsidiary condition is completely equi-
valent to the Pauli exclusion principle, although
multiple occupation would be allowed by the Bose
commutation relations of the a);. operators if the
subsidiary condition were not imposed. The ecom-
binatorial problems associated with an exact evalua-
tion of the generalized grand partition function

5 = Trexp [-B(H — uN + vI)] (112)

[ef. (28)] to leading order in © are forbiddingly dif-
ficult for either the ideal Fermi or Bose gas, but on
the basis of the general discussion following (31),
such an evaluation should lead to the usual thermo-
dynamic functions. This difficulty is somewhat
academic, since as soon as a real interaction V' is
present in H, it is necessary to introduce approxi-
mations, which should also be applicable to the
exchange interaction yI. The treatment of the sub-
sidiary condition with the aid of (112) and the
analogue of (30) will then be justified for a given
system and given approximation method if one can

show that the fractional fluctuations of N and I

vanish in the limit n — o when calculated to the

given approximation.

The analysis of the previous paragraph shows
that Bose condensation of fermion pairs is forbidden
by the subsidiary condition in the case of the ideal
Fermi gas, in spite of the fact that the pair anni-
hilation and creation operators a.;- and a,,. satisfy
Bose commutation relations. What about an in-
teracting Fermi gas? It has long been suspected that
superconductivity is related to Bose condensation
M(mﬁ)—(l%), the Bose commutation relations for
the @’ and axx 't operators, and axx’|0) = 0, one can show that
Iag, k' = * @iy 5,,110) = § X0 Tak, et 0 Grypy ks, 110)
where Y 7’ is a sum over all interchanges T of two & indices
on different at operators. The same relationship is valid if an
arbitrary permutation is first applied to the k; on both sides.
But it follows from a standard argument of group theory
that, for fixed T, the mapping P — TP is a one~one mapping
of the set of all P onto itself. Furthermore, the parity of TP
is the opposite of that of P, for any interchange T; hence,
Tp (—1)PBP = —Y, (—1)»®TP. Finally, T2 = 1 for
any interchange T'. Thus,

Id = H2n) 74 T X p (= 1)PPPay, s, - -
= — {1 Tp (=12 Payg, g, - - -
= _%V(n)éo!

where »(n) is the number of different interchanges of two

k indices on different a' operators. One can readily show

that »(n) = 2n(n — 1); hence I®& = —In(n — 1)&, the
desired result.

Gy ka1 10)
Qe ksat10)
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of electron pairs,”®'* and a detailed mathematical
theory which incorporates such a condensation has
been developed by Schafroth, Butler, Blatt, and
Matsubara.”®*'***° Furthermore, Blatt has given a
simple qualitative argument®° to the effect that Fermi
statistics not only do not interfere with Bose con-
densation of fermion pairs, but actually aid it. These
conclusions are, however, open to doubt. Finally,
Blatt’s qualitative argument®® cannot be generally
true, since it takes no account of interactions and
hence should apply to an ideal Fermi gas, in contra-
diction with the fact that free fermion pairs do not
condense. We shall therefore re-examine here the
question of Bose condensation of fermion pairs for
an interacting system; our approach will be to try
to establish conditions under which such a con-
densation is or is not compatible with the sub-
sidiary condition, i.e. with the exclusion principle.
Consider a two-fermion wavefunction ¢,(kk")
which is arbitrary except for the requirement that
it is normalized, antisymmetric in % and %', and an
eigenstate of total linear momentum and total S,.
The latter requirement implies that ‘

eo(kk") = go(k) Orrk’ 0y (113)

where ¢ = (q, ¢); the normalization and antisym-
metry requirements are then

2ale® =1, golg — k) = —go(k).

The 2n-fermion state in which all n fermion pairs
are Bose-condensed into the state ¢, is then (110),
where a, is the creation operator for the state go;
the other ¢, necessary to complete the formalism
are also arbitrary, except for the requirement that
the set composed of ¢, plus all ¢, with o % 0 must
be complete and orthonormal. But it is clear from
(94) and (95) that the state (110) will be an eigen-
state of I if and only if

(@B [1]00) = 840060 (00 |Z| 00),  (115)

in which case the eigenvalue of I will be in (n — 1)
X (00 || 00). But by (95) and (113),

00 |1]00) = 27 |g(0)[* > 0. (116)

Hence a state of the form (110) can never satisfy
the subsidiary condition (93) (with the minus sign).

28 V, L. Ginzburg, Usp. Fiz. Nauk. 48, 25 (1952).

27 M. R. Schafroth, Phys. Rev. 96, 1442 (1954).

28 M. R. Schafroth, S. T. Butler, and J. M. Blatt, Helv.
Phys. Acta 30, 93 (1957).

9 T, Matsubara and J. M. Blatt, Progr. Theoret. Phys.
(Kyoto) 23, 451 (1960); J. M. Blatt, J. Australian Math. Soc.
1, 465 (1960); J. M. Blatt (to be published); T. Matsubara
and C. J. Thompson (to be published).

(192’2{. M. Blatt, Progr. Theoret. Phys. (Kyoto) 27, 1137

(114)
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This shows that complete Bose condensation into
any momentum- and spin-conserving two-particle
state ¢, is prevented by the exclusion principle.

This result bears directly on the physical inter-
pretation of the BCS theory.?' The BCS variational
trial state can be written in the form®*

v = {kIeIs (1 = h)t 4+ RiJbL bk, 1} 0), (117)

where 8 is the shell*’
€p — o < é(k) < €p -+ hw; (118)’

hx(=h-x = h¥) is the solution of the BCS integral
equation, which satisfies

hy = 1, ek) < e¢p — how,
0<h <1, ke&s,
he =0, k) > e + ho; (119)
the b), are defined by
bis = ks, k) < & — ho,
=cl,, ek) > e — hw, (120)

with cx, and cj, the electron annihilation and
creation operators, and |0) in (117) is the vacuum
of the redefined Fermi operators by,, by,. The 2n-
electron projection of (117) is****

Wpos = const {ké i/ (1 = hi)bs 1 bl 1™ 10). (121)

Defining®*
Ao =€ 2 /(1 = h)Tba; bl
e = [:L;g /(1 — hi)] 7, (122)
one can write (121) in the form
Wpos = const (4g)" 0). (123)

Blatt® interprets this as a state in which all elec-
trons in the shell $ are Bose-condensed into the same
pair state, but this interpretation is untenable. In
the first place, A, and A; do not satisfy the Bose
commutation relation, so that (123) does not
directly imply Bose condensation. Furthermore, even
after passing to the ideal state space in which the
pair annihilation and creation operators a., a, do
satisfy Bose commutation relations, if one simply
_ay, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957).

2 J. M. Blatt, Progr. Theoret. Phys. (Kyoto) 23, 447
(lggolzfote that 2n is not the total number of electrons but

rather the number in the shell 8.

3 The normalization constant € 1is chosen so that
{0]AoAst |0y = 1 [ef. (52)].
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replaces A, by ag [and |0) by the ideal vacuum |0)],
one obtains a state of the form (110)*® which, accord-
ing to the previous paragraph, cannot satisfy the
subsidiary condition (93).*® One can project out a
state which does satisfy the subsidiary condition
with the aid of the projection operator
2%
P=@nt [ deetree, (12
0

but since I [Eq. (94)] involves not only a, and al
but annihilation and creation operators for a whole
complete set of pair states, it is certainly not true
that the projected state has complete Bose condensa-
tion into the pair state ¢,. Following Blatt, one can
regard the BCS ground state as exhibiting complete
condensation of a certain type, called “Schafroth
condensation” by Blatt for historical reasons, but
our analysis shows that complete Schafroth con-
densation is not the same as complete Bose condensa-
tion. It is, however, plausible that there can be
partial Bose condensation into a bound pair state
¢o such as that of the BCS theory, and that the
condensed fraction will approach unity as the density
approaches zero. This is best investigated by trans-
forming the BCS Hamiltonian into the electron-
pair-boson representation with the aid of (92) and
then examining the structure of its ground state
(more exactly, that of H + vI) in this representa-
tion. It would take us too far afield to do this here;
we hope to present such an analysis in a later
publication.

Another type of application which we do not have
space to discuss here is the treatment of systems of
identical particles with interactions containing a
hard core. We wish only to point out the following:
If the wavefunction ¢(r, - -+ r3,) of a system of 2n
identical particles is expanded in terms of two-
particle wavefunctions ¢,(rr’) according to (90)
(with %’s replaced by r’s) and if each ¢, vanishes
for |r — r'| < a (one could, e.g., choose the com-
plete set of solutions of the two-body hard-sphere
problem), then clearly ¥(r, 1,,) will vanish
whenever |r; — 1, < aorir; — ] <a---.But
if the coefficient function c(ay --- a,) satisfies the
subsidiary condition, or equivalently if the state
vector ® satisfies the subsidiary condition (93), then
¢ will be completely symmetric or antisymmetric
in 1, +-+ 1,, so that ¢ will also vanish when any

# The corresponding pair state ¢ is
W(ka, kKd') = 2‘*@( Bop Bory — 8oy do'y ) 6k’v_k[hk/(1 —hk)li
for k and k’ in the shell §, and vanishes outside 8.

36 In the terminology of Sec. 3, the coefficient function
clar * -+ an) = 84,0 ** " 84,0 does not satisfy the subsidiary
condition.
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two arguments are closer than a. In this way, the
problem of making ¥ vanish when hard cores over-
lap is replaced by that of making & satisfy the
subsidiary condition ensuring Bose or Fermi sta-
tistics. This problem is still nontrivial, but it may
well be simpler than that of avoiding hard-core
energy divergences.
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APPENDIX. EIGENVALUE SPECTRA OF THE
EXCHANGE OPERATORS

The analysis is simplest if we return to the
Schrédinger representation. The variables which are

not permuted need not be indicated explicitly; thus
one has [cf. (4) and (7)]

I=Y1I,

»<q

L - - yn) =W - Yoo Yo =00 Ya)y (A
where I is either I, or I,., and y, -+ y, are
either X, --+ X, OF 114y *** Tin-141. Since any

permutation can be written as a product of inter-
changes, the problem of the possible behaviors of ¥
when acted upon by the interchanges I, and hence
by their sum I, is closely related to the well-known
problem of the possible symmetry classes of the
group of all permutations of » objects. The solution
of this problem can be expressed in terms of Young
diagrams and their associated Young symmetry
operators®; the set of all irreducible representations
of the permutation group is in one-one correspond-
ence with the set of all Young diagrams, which in
turn is in one—one correspondence with the set
of all partitions of n of the form n, + n. 4+ --- = n,
where the n; are positive integers satisfying n, >
n, > --- . The Young symmetry operator S(D)
associated with a given Young diagram D sym-
metrizes ¥ with respect to the arguments lying in
each row of D, and antisymmetrizes it with respect

37 See, e.g., H. Weyl, The Theory of Groups and Quantum
M eéc};fanics (Dover Publications, Inc.,, New York, 1950), pp.
358 ff.
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to the variables in each column; the functions
S(D)y and S(D')Y are orthogonal for D = D’
because they have different symmetry.”” We shall
now prove that S(D)y is an eigenstate of I with
an eigenvalue (D) given by

+ -t - D) - et - D) — -, (A2)

where the n; are the lengths of the rows of D and
the n* are the lengths of its columns. We first write
the symmetry operator in the form*®

8(D) = 2» (PP, (A3)

where the summation runs over all permutations of
the n arguments of ¢. The coefficients c(P) are
defined as follows: If P can be factored in the form
P = CR, where R permutes the arguments in each
row of ® among themselves and C similarly per-
mutes the arguments in each column, then this
factorization is unique,’® and we define ¢(P) = =+1
depending upon whether the column permutation
C is even or odd; if P cannot be so factored, then
¢(P) is defined to be zero. Let us examine the
products I,,S(®). Each I, is itself a permutation
(a single interchange), and so I, P is another P;
furthermore, by a standard argument of group
theory, the mapping P — I,,P is onc—one, ie. it
permutes the set {P}. Hence (A3) can be written

S(9) = Xpe(l,P),.P. (A9)
Then, since I, = 1, one has
18(9) = 2 LS®) = X,dP)P,  (A5)
with a
dP) = 3 ell,P). (A0

r<q

According to a theorem of Weyl,*® it would follow
from the relationships

d(PR) = d(P), d(CP) = (—1)>“ d(P), (A7)

where R and C are any permutations of the types
defined after (A3) and p(P) is the parity of P, that

d(P) = U(D)e(P), (A8)

where (D) is some numerical coefficient; it would
then follow that S(D)y is an eigenstate of I with
eigenvalue (D). In order to prove the first of Eqs.
(A7), we first write, by (A6),

38 Reference 37, p. 361.
3 Theorem (14.2) of reference 37.
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n

d(PR) = Y. ¢(I,.PR).

r<q

(A9)

By definition ¢(I,,PR) vanishes unless there exists
a (unique) factorization

I,,PR = CR’,

in which case ¢({,,PR) = =1 according to whether
C is even or odd. But (A10) can be written

1,.,P = CR'R™ = CR", (A1)

since the inverse of a row permutation is also a row
permutation; hence

¢(I,.PR) = c(I,.P). (A12)

The first of Eqs. (A7) then follows from (A6) and
(A9). To prove the second of Eqgs. (A7), we note
first that a permutation ¢ which permutes argu-
ments in the same column of D permutes arguments
in the same row of the dual diagram D* (that dif-
fering from 9D by interchange of rows with columns);
it should therefore be possible to derive the second
(A7) by applying the first (A7) to the dual diagram.
Denoting quantities pertaining to ©* by stars, one
has by the first (A7), together with (A6) and (A9),

dPTR*) = 2 cX(I,,PTRY)

p<q

(A10)

n

= 2 MI,PT) = a(PT).  (A13)
r<¢
But*
c*P) = (=1)"Te(P). (A14)
Hence, since I} = I,,,
; (_l)puqu--Rﬂc((R*)*’P[M)
= 2 (=) T(PLL,).  (AlD)

p<q

But
(_ l)p(lqu“R*) — (__ 1)17([”)(_ l)n(l"')(_l)p(k‘)
— _(_l)p(P")(_l)n(R‘)

(_l)p(lqu’“) —_ (_Dr(lpq)(_l)p(l"')
= — (=1, (A16)
Canceling the constant factor — (—1)**"" from
both sides of (A15), one has then
(=" 3 e((R®7PLY) = 2 c(PLy). (A17)

p<q »<q

40 Reference 37, p. 368.
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But R* permutes rows of D*, hence columns of D,
so one can give (R*)™' the new name C. Then,
gince p(C™") = p(0),

n

S CPLY = (—=1"® X e(PLy).

p<a p<q

(A18)

Now
PI,,= (PI,,P)P, CPI,, = [CPI,(CP)""]CP. (A19)

But for any P, the transformation I,, — PI, P!
is a one-one mapping of the set {I,} onto itself.
Hence

n

> dL,CP) = (=" Y e(l,.P),

r<aq p<q

(A20)

although, in general, the individual (pg) terms on
the left and the right sides of (A20) are not equal
(those on the right are a permutation of those on
the left). The second of Eqgs. (A7) then follows from
(A20) and the definition (A6). This completes the
proof of (A7), and hence of (AS8).
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It then follows from (A5) and (AS8), that
IS(D)y = UD)S(D)Y, (A21)

i.e. that S(D)yY is an eigenstate of I with eigenvalue
(D). To obtain the explicit expression for I(D),
we note that ¢(1) = 1 where 1 is the identity per-
mutation; hence by (A8) and (A6),

n

(D) = d1) = 2 o).

p<q

(A22)

Now it follows from the definition of ¢ that ¢(Z,,)
vanishes unless y, and y, are in the same row or the
the same column of D, in which cases it is 41 or
—1, respectively; Eq. (A2) then follows immediately.
Finally, since any ¥ can be written as a linear com-
bination of the states S(D)¢ with all Young dia-
grams D, Eq. (A2) gives all eigenvalues of I for
n-variable functions ¢¥(y, --- w.), and hence all
eigenvalues of 7, and I.,. for n-atom states
(X, - X, 2, - - - x5,,). It follows from (A2) that the
spectra of I,,, and I, for such states are discrete
and lie on the interval [—in(n — 1), +in(n — 1)].
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Evaluation of Certain Sums Arising in Chemical Physics *

PaiLir B. ABraHAM AND GEOrRGE H. Wriss

Unaiversity of Maryland, College Park, Maryland
(Received 30 April 1963)

In this paper we show that the Poisson transformation of finite sums of the form

N
2. F (cos 27j/N) cos 2njn/N
i=1

generally leads to a quickly convergent sum for problems of physical interest. Examples related to
molecular orbital theory and lattice dynamics are discussed.

HERE are many problems in chemical physics
in which sums of the form

1 & 2mj 2am
Sy(n) = ¥ > F| cos v | STy

i=1

@)

or the generalization to a multiple sum, form a
central role. In many instances N is so large that
the approximation of the sum by an integral is
sufficiently accurate. However, there are problems
in which N is of the order of 20 or 30, making it
awkward to work with the sum of Eq. (1) directly,
and the limit N = « is not sufficiently accurate.
It is the purpose of this paper to indicate a con-

* This research was supported in part by the United States
Office of Naval Research under grant Nonr 595(17).

venient transformation of the sum in Eq. (1) which
allows one to estimate correction terms for large N.

As a more concrete motivation for the theory
that follows, we cite two problems in which sums of
the form given in Eq. (1) arise. In a study of bond
alternation in long polyenes, Salem obtains sums
of the form

1
2n + 1
cos [2rhj/(2n + 1)]
{1 4+ 2 cos [2rj/(2n + 1)] + £}
which is evaluated to lowest order in t®.! Similar
i L. Salem, Proc. Cambridge Phil. Soc. 57, 353 (1961).

S2n+l(h) =

X 3

j=-n

)



MANY-BODY PROBLEM FOR COMPOSITE PARTICLES

But R* permutes rows of D*, hence columns of D,
so one can give (R*)™' the new name C. Then,
gince p(C™") = p(0),

n

S CPLY = (—=1"® X e(PLy).

p<a p<q

(A18)

Now
PI,,= (PI,,P)P, CPI,, = [CPI,(CP)""]CP. (A19)

But for any P, the transformation I,, — PI, P!
is a one-one mapping of the set {I,} onto itself.
Hence

n

> dL,CP) = (=" Y e(l,.P),

r<aq p<q

(A20)

although, in general, the individual (pg) terms on
the left and the right sides of (A20) are not equal
(those on the right are a permutation of those on
the left). The second of Eqgs. (A7) then follows from
(A20) and the definition (A6). This completes the
proof of (A7), and hence of (AS8).

1115

It then follows from (A5) and (AS8), that
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venient transformation of the sum in Eq. (1) which
allows one to estimate correction terms for large N.
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that follows, we cite two problems in which sums of
the form given in Eq. (1) arise. In a study of bond
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of the form
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sums arise in many calculations which use molecular
orbital theory as a starting point. Another applica-
tion of the present work is to the ecalculation of
Green’s functions for problems in lattice dynamics.

N N N

P. B. ABRAHAM AND G. H. WEISS

If cyclic boundary conditions are assumed, the
Green’s function for a three-dimensional simple
cubic lattice with nearest-neighbor interactions
only, is®

1
g(my, ma, m3;2) = 33 > 2 X

f1=1 ja=1 fa=1

The method which we propose to elaborate is a
form of the Poisson transformation, and is related
to a technique exploited by Salem, although he did
not take full advantage of it. Let us suppose that
the function F(cos 6) has a convergent Fourier
expansion which can be written

F(cos §) = =2 —I— Z a, cosnb, 4)
=l
where
1 2r
a, = ;f F(cos 6) cosnf db, (5)
0

and that when this is substituted into Eq. (1) the
summations over j and n can be interchanged. This
will be the case, for example, when Y, a, is uniformly
and absolutely convergent; a condition usually ful-
filled in sums arising from physical problems. Then
the expression for Sy(r) is

Z [aO + Za,, cos——] cos%

i=1 n=1

Sy(r) =

ZO THIN + ; Ain-r (6)

N)H—a

QiiNerls

It
B |t
M

jm=—

Thus the finite sum Sy(r) is converted into an in-
finite sum of Fourier coefficients. While this may not
seem to be helpful, it must be remembered that
Fourier coefficients decrease with increasing index,
by virtue of the Riemann—Lebesgue lemma, and
the convergence of the resulting series can be quite
rapid. In many cases it is sufficient to approximate
Sx(r) by the lowest-order terms

Sy(r) ~ @)

The term a, is just the approximation of the sum
by an integral, and 2ay_, is the first correction term.

As a first example of our technique, let us evaluate
Salem’s sum in Eq. (2). In order to evaluate the

1 1
30, + 305-,.

21rjl m, 27rj2 my 21[']3 ms
08 7 COS Ty cos N . -
) 2w 27
z+alcOSbINll+agc 1;32 a3 COS WNja
sum we need the Fourler coefficients
a 177" cos j0 df
i = 2 raws
(1 + 2 cos 8 4 1) ®
N ) (1 + ¢ )
TG+ pa-—- -t/

where P,(z) is a generalized Legendre function of
the first kind. Hence the formal expression for

Sani1(h) is
1”413 (1+ z>6ho

o ; 14+
P_A{M(I - t‘)

S2n+l(h) =
! [ 1

T Ao LA T F R

> 1 ,-N-h<1 + ;)]

AP IRy wrnv g 2 S oy 1l

The first term can be transformed, by means of
the identity®

9)

P_; (cosh ) = [2/7 cosh (§n)]K(tanh %9), (10)

$a, = (2/mK() (11)

where K(z) is a complete elliptic integral of the first
kind. Other terms in the series can be written as
linear combinations of complete elliptic integrals.
However, they are usually negligible since for large
N the asymptotic estimate’®

iN+h 1 + t4)
P (1 - ¢

B L iwen ( 1 )]
=G+ mt [1+0N+h+1 (12)

is valid.
In many cases the summations indicated in Eq. (1)

? A. A. Maradudin, E. W. Montroll, and G. Weiss,
Lattice Dynamws in the Harmonic A pproxzmatzon, (Academlc
Press Ine., New York, 1963).

3A. Erdelyl, et al Higher Transcendental Functions
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I1.



EVALUATION OF SUMS

can be carried out in closed form. Consider the one-
dimensional Green’s function

cos (2rin/N)

gln; cosh ) = ,z.; cosh ¢ + cos (2rj/N)’ (13)
The Fourier coefficients are
a; = 2(—1)e”"'*! /sinh |e|. (14)
Hence, after some algebra we find
_ (=D" cosh GN — ) lo|

oo e ) =GR lel smhiN o] OO
for N even, and

g(n, cosh lp) — (—1) sinh (%N - ‘?’b} ‘99! (16)

= Sinh lp]  sinh 3V o]
for N odd. Any sum which can be put into the form
g(n; cosh o1, cosh ¢,, - - - cosh g)

cos (2mrin/N)
’2-:{ IIn~: [cosh ¢, + cos (27j/N)] an

can be evaluated in a similar manner by expanding
the demoninator into partial fractions. The sum
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. 1 cos (2rjn/N)
gln; cos @) = & cos ¢ + cos (2rj/N)

can be evaluated by a similar technique (provided
that ¢ is chosen so that the denominator doesn’t
vanish) by considering the function g(n; cos ¢ + 7¢).
The Fourier coefficients of the latter function are
defined, in contrast to those of the function in Eq.
(18). In the final result, the limit ¢ — 0 is to be taken;
all of this is equivalent to taking the principal values
of the Fourier coefficients.

An interesting example is provided by an expres-
sion derived by Mazur and Montroll for the momen-
tum autocorrelation function for & mass in a mono-
tonic lattice.* This expression is

(8)

Y s )
oSN + 1,'2;1\{ cos ths1n2N+ I (19)

By a slight modification of our technique, and by
using the formula

p()) =

cos (@sin 6) = Jo@) + 2 3 J.(@) cosn, (20)

nel

we find that Eq. (19) can be transformed to

N+

In the limit of N — =, p(}) is approximated by
Jo{wyt) which tends to zero as ¢ — . It is clear,
however, from Eq. (19) that p(f) is an almost periodic
function. An idea of the approximation involved
can be gained by examining the sum which appears
in Eq. (21). The coefficients of J,(w.f) vanish with
(2N + 1) for all values of n except for those in
which the sine term in the denominator vanishes.
For this case we must have

na /AN + 2) = kn, (22)

and the term in brackets becomes 2N 4 1. There-
fore, excepting terms which are O(N™"), we have
the approximation

k=1,2 -,

p{D) = Jolwrt) + 2 Z Joeniniwrd).

i=1

@3)

Thus we see that the approximation p(f) = Jo(wrt)
will generally be valid for wyt << 2(2N 4 1); other-
wise, other terms from the series beeome significant.
These results can also be obtained by physical argu-
ments, but the present discussion provides a quanti-
tative estimate of deviations from the integral ap-
proximation.

= {1 4 2.cos [inr(V + 1)/@N + 1)]sin [Nnx/(4N + 2)]

sin [nr/(4N + 2)] }J alwsd). "(21)

The extension of the present method to higher
dimensions is straightforward. Suppose that the sum
of interest is

Sulry, 72y =+ 73
N N . .
- iy 2wl m)
5 mHe B e
2y 2§

X eos —3 NS T (24)
and F (cos 6, --- cos 6,) has the Fourier repre-
sentation
F(cos 6,, -+, cos b, = E T Z Y. P

ny=0 npe=0
X coS Ny 0y cOSNafy - -+ COS N0, (25)
where
Zr
21‘

Ay mareroine = - F(cos 0, cos 6, --- cos 6)
0

X cosn, 6, + -+ cosn,b, db, --- db,, (26)

4P, Mazur and E. W. Montroll, J. Math. Phys. 1, 70
(1960).
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and p is the number of indices (n;, - -+ n,) which
are equal to zero. Then a rearrangement of summa-
tion’s yields an alternate expression for Sy(ry, - - - 4)
as

SN(TI, 7'2, A Tk)

21: Z E A111N+nl [iaN+ral, el iaN+rele (27)

ji=—o jk=—c

Using these results we see that the finite sum of
Eq. (3) can be transformed into an infinite sum in-
volving the integrals

Am.nn.m -

A

cos 1,0, cos ny6, cos ny0; d6, db, db,

Xfffz—i—alcosﬁl+a2cos02+a3cos03’
(1]

(28)

el > |y + o + aal

Tables of these integrals are available for the case
a = ay az/ay = 1, 2, 4, 8, and 16, and z/a; =
(2 4+ as/a)B, where 7' = 0.0 (.01) 1.00.° The
first approximation to the sum in Eq. (3) is just
the value of the integral approximation to the
Green’s function. Further correction terms can be
‘derived from larger N by using the asymptotic
evaluation®

cos 1,8, cos ny0, cos ny0; do, db, do,

-?fffz—l—al cos 6, + a; cos 6, + a3 cos 6,
0

a\t e 4®
WA
where
A? = 22 + az/on) 2/ 2oy + a3) — 1], (30)
R’ = [n} + ni + (a/as)ni).

We therefore see that corrections to the integral
approximation to the three-dimensional discrete
Green’s function fall off better than exponentially
with increasing N. Thus an approximate expression
for g(n,, ns, ns; 2) is

g, npy n552) ~ F(Aninsne + As-nsinans
+ Aui v T Anyns N,
+ A voni¥one T Anniine N
F AvenNonane T Avoni¥ongv-n).  (31)

®A. A. Maradudin, E. W. Montroll, G. H. Weiss,
;{(llgg(r)r)nan and H. W. Milnes, Mem. Acad. Roy. Belg. 14

P. B. ABRAHAM AND G. H. WEISS

Generally only one of the A’s need be evaluated as a
triple integral, and the remaining terms can be ap-
proximated as in Eq. (29).

Finally, we mention some generalizations. The
present method is clearly not restricted to functions
of the form F (cos 6), but any surnmation of the form

5.~ £165)
YUEOWN

can be transformed to an infinite, but sometimes
more rapidly convergent, series by calculating the
Fourier coefficients of F(6) and using Eq. (6). Also,
anite products of the form

X 21rj)
Py = 11 P
N 1I;I] N

can be calculated by taking logarithms, and there-
after following the steps just outlined. Further, more
general forms of Poisson summation can be employed
to generate identies such as those we have employed
for Fourier-series representations. As an example,
let {@.(z)} be an orthonormal sequence of functions,
and let F(z) be expressible as

(32)

(33)

F@) = 2 (@) (34)
If we assume that the a, are such as to permit free
interchanges of orders of summation, and that the

sums

N Vi
v = ¥ o(2) 9
i=1
are known, then we can formally write
N 21'_] o
> F = > a,UN). (36)
7=1 n=0

An almost trivial example of this is provided by
Tschebycheff polynomials. If F(z) can be expanded
as

Fi) = 2 aT.@), @37
n=0
then
FEAe) -4 £ Bl )
N;F cos 37 =N & ga,.T,,. cos 7
1 < - 2rin
=¥ ,;oa" z; ST = gam (38)

No detailed calculations have been undertaken with
this formula.
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